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Abstract 38 
 39 
Extensive sampling of neural activity during rich cognitive phenomena is critical for robust understanding 40 
of brain function. We present the Natural Scenes Dataset (NSD), in which high-resolution fMRI responses 41 
to tens of thousands of richly annotated natural scenes are measured while participants perform a 42 
continuous recognition task. To optimize data quality, we develop and apply novel estimation and 43 
denoising techniques. Simple visual inspections of the NSD data reveal clear representational 44 
transformations along the ventral visual pathway. Further exemplifying the inferential power of the 45 
dataset, we use NSD to build and train deep neural network models that predict brain activity more 46 
accurately than state-of-the-art models from computer vision. NSD also includes substantial resting-state 47 
and diffusion data, enabling network neuroscience perspectives to constrain and enhance models of 48 
perception and memory. Given its unprecedented scale, quality, and breadth, NSD opens new avenues 49 
of inquiry in cognitive neuroscience and artificial intelligence.  50 
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Introduction 51 
 52 
Neuroscience has an insatiable appetite for data. Many ongoing efforts to extensively sample brain 53 
activity1–3 and structure4–6 are motivated, in part, by the availability of new computational methods that 54 
make analysis of massive datasets feasible. Equally as important is the growing desire to understand how 55 
the brain coordinates complex sensory and motor behaviors and the realization that the neural networks 56 
supporting such behaviors span multiple scales, from single neurons to local circuits to whole systems. 57 
Understanding massive, complex networks will inevitably require commensurately massive amounts of 58 
data. 59 
 60 
The need for massive data is especially acute in visual neuroscience, a model system for understanding 61 
brain function. The network that mediates our ability to flexibly and efficiently perceive the visual world 62 
occupies approximately one-third of human cerebral cortex7 and interconnects brain areas with 63 
profoundly different functional properties8. This network both encodes visual stimuli and interfaces visual 64 
representations into a cognitive context, including information about what one has already seen9, might 65 
see10, or is selectively attending11. Understanding vision thus means interrogating a high-dimensional, 66 
context-dependent neural network. 67 
 68 
Given these considerations, it is clear that extensive experimental data providing access to whole-brain 69 
responses to complex stimuli are critical in the quest to understand the human visual system. The ideal 70 
dataset should include naturalistic stimuli: the visual system is distributed widely across the brain, and 71 
natural scenes, in addition to being ecologically relevant, are effective activators of the entire system12. 72 
Moreover, the ideal dataset should be large: in order to take full advantage of powerful data analysis and 73 
machine learning (ML) techniques that have recently become available, we need considerably more data 74 
than is currently available. How much? Modern ML methods used in computer vision to process natural 75 
scenes (e.g. deep convolutional neural networks) require tens to hundreds of thousands of image 76 
samples for training13,14. A dataset that sampled brain activity at these scales would raise the exciting 77 
possibility of exploiting these methods to develop better models of how the brain processes natural 78 
scenes15–20, and would accelerate efforts to bridge cognitive neuroscience and artificial intelligence21. 79 
 80 
In this paper, we present a dataset that achieves sampling at this ambitious scale. The Natural Scenes 81 
Dataset (NSD) consists of high-resolution (1.8 mm) whole-brain 7T fMRI of 8 carefully screened human 82 
participants who each viewed 9,000–10,000 color natural scenes (22,000–30,000 trials) during 30–40 83 
scan sessions distributed over the course of a year. Aggregated across participants, NSD includes 84 
responses to 70,566 distinct natural scene images—this is more than an order of magnitude larger than 85 
comparable datasets involving fMRI sampling of many images22–24. Moreover, as we show, the high 86 
quality of the NSD dataset makes it possible to leverage the full power of modern ML methods for 87 
developing better models of visual representation. Achieving high data quality was afforded, in part, by 88 
the use of ultra-high magnetic field strength (7T) to improve signal-to-noise ratio over what is attained at 89 
lower field strengths25. 90 
 91 
NSD incorporates several innovations in addition to its unprecedented scale and quality. To reconcile 92 
extensive sampling with a practical time commitment, we used an aggressive rapid event-related design. 93 
This drove the development of new analysis techniques that accurately compensate for the overlap of 94 
hemodynamic responses across successive trials. To ensure participant engagement and control 95 
cognitive state, we incorporated a continuous recognition task26 in which participants were instructed to 96 
indicate whether they have seen each presented image at any point in the past. In addition to making the 97 
experiment tolerable (and even somewhat interesting) for participants, inclusion of this task makes NSD, 98 
to our knowledge, the longest-term continuous recognition memory fMRI study in history and, thus, a 99 
likely source of new insights into long-term memory formation and the cognitive context of vision. Finally, 100 
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to ensure the broad reach of the NSD dataset, we incorporated design input from a large network of 101 
collaborators with diverse scientific interests (e.g., low-level vision, high-level vision, memory, 102 
connectivity, neuroanatomy) and technical expertise (e.g., mapping, multivariate pattern analysis, 103 
encoding models, representational similarity analysis, neural network modeling). This input helped 104 
precipitate a carefully curated dataset with extensive auxiliary measures. 105 
 106 
The goal of this paper is to provide a comprehensive description of the design, acquisition, and 107 
preparation of the NSD dataset. In particular, we detail the state-of-the-art acquisition and analysis 108 
methods that we developed for the dataset, and perform comprehensive assessments that evidence the 109 
high quality of the data. We also perform initial analyses of the NSD dataset demonstrating the feasibility 110 
of using data-driven analyses to reveal insights into vision and memory. We expect that NSD will serve as 111 
a valuable resource with widespread application in neuroscience and its intersection with artificial 112 
intelligence. 113 
  114 
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Results 115 
 116 
Sampling thousands of images during continuous recognition 117 
 118 
We obtained 73,000 color natural scenes from the richly annotated Microsoft Common Objects in Context 119 
(COCO) image dataset14, a dataset that is heavily used in the computer vision and machine learning 120 
communities. Our experimental design specified that each of 8 subjects would view 10,000 distinct 121 
images and a special set of 1,000 images would be shared across subjects (8 subjects ´ 9,000 unique 122 
images + 1,000 shared images = 73,000 images). This sampling strategy was chosen to maximize the 123 
number of distinct images in NSD, while also facilitating investigations of similarities and differences in 124 
brain representations across individuals27. Each image would be presented 3 times to a given subject. 125 
While this is a low number, we reasoned that 3 trials would be sufficient to produce robust responses 126 
given our use of ultra-high field (7T) fMRI. Furthermore, images would be presented using a rapid event-127 
related design consisting of 4-s trials (Figure 1A). This was done to maximize statistical power and to 128 
create an engaging experience for the subjects. In addition, the continuous nature of task engagement—129 
in contrast to slow event-related designs and block designs where engagement is likely to fluctuate—130 
helps avoid unwanted respiratory variations28 and arousal-related confounds29. 131 
 132 
The NSD experiment was split across 40 scan sessions for each subject (Figure 1B). To control cognitive 133 
state and encourage deep processing of the images, subjects were instructed to perform a continuous 134 
recognition task in which they reported whether the current image had been presented at any previous 135 
point in the experiment. We controlled the distributions of image presentations such that both short-term 136 
and long-term repetitions were probed (Extended Data Figure 1A). Parameters were selected such that 137 
even in the first scan session, images were not always new, and even in the last scan session, images 138 
were not always old (Extended Data Figure 1B). 139 
 140 
Neuroimaging data collection on carefully selected subjects 141 
 142 
All fMRI data in NSD were collected at 7T using a whole-brain 1.8-mm 1.6-s gradient-echo EPI pulse 143 
sequence. After verbally screening a number of potential participants with respect to basic eligibility 144 
criteria, we recruited 14 subjects to participate in an initial 7T fMRI screening session which involved 145 
population receptive field (pRF)30 and category localizer (fLoc)31 experiments. Based on data from this 146 
scan session, we ranked the 14 subjects with respect to data quality—specifically, we quantified BOLD 147 
variance explained in the pRF and fLoc experiments, behavioral performance in the pRF and fLoc 148 
experiments, and two metrics of head motion, normalized these six measures, and then averaged the 149 
measures (for details, see ‘Rankings from the 7T fMRI screening session’ in the Methods). We then 150 
invited the top 8 subjects to participate in the full NSD experiment (all subjects accepted). This selection 151 
process was conducted to ensure the best possible data quality for NSD. Analyses conducted after 152 
completion of the NSD experiment confirm that the ranking procedure successfully identified subjects that 153 
yield high-quality data and that data quality would have suffered substantially had we omitted the 154 
selection process (Figure 2C). 155 
 156 
Data were collected from the 8 NSD subjects over the course of a year (Figure 1C). Subjects consistently 157 
engaged with the task: the average response rate across scan sessions was above 99% for all subjects 158 
and the response rate never dropped below 96% in any single scan session. Moreover, all subjects 159 
exhibited successful recognition performance (Figure 1D), issuing ‘old’ responses at a higher rate for 160 
previously presented images (blue and orange lines) than for novel images (yellow lines). The full NSD 161 
dataset includes a variety of anatomical neuroimaging measures (including T1, T2, diffusion, venogram, 162 
and angiogram), functional neuroimaging measures (including the pRF and fLoc experiments, the NSD 163 
experiment, resting-state data, and two additional experiments involving synthetic stimuli and visual 164 
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imagery), and behavioral measures (Figure 2A–B). In some fMRI sessions, physiological data (10 165 
sessions per subject) and eyetracking data (2–4 sessions per subject) were also collected. Analysis of the 166 
eyetracking data indicates that subjects were able to successfully maintain central fixation most of the 167 
time, with some variability in fixation performance across subjects (Extended Data Figure 4). With 168 
regards to the core NSD experiment, we completed the full set of 40 NSD scan sessions for four of the 169 
subjects, but due to unforeseen summer absences and scheduled decommissioning of the 7T scanner, 170 
we completed 30–32 NSD scan sessions for each of the other subjects. A full breakdown of data 171 
collection and analysis procedures is provided in Extended Data Figures 2–3. 172 
 173 
Stable high-resolution imaging across scan sessions 174 
 175 
In our experience, although visual inspection is non-quantitative and somewhat subjective, it is still the 176 
most effective way to assess many common aspects of fMRI pre-processing32. Accordingly, we generated 177 
a comprehensive set of visualizations that detail the excellent quality of the raw and pre-processed NSD 178 
data. These include detailed inspections of raw time-series data to confirm the presence of stimulus-179 
evoked signals (Supplementary Figure 3); movies that assess the co-registration of the different imaging 180 
modalities (e.g. T1, T2, EPI; Supplementary Video 1); movies that assess the manually-edited cortical 181 
surface reconstructions generated using FreeSurfer (Supplementary Video 2); movies that assess the 182 
registration of the NSD subjects to the fsaverage (Supplementary Video 3) and MNI (Supplementary 183 
Video 4) group spaces; movies that inspect raw and pre-processed EPI volumes (Supplementary Video 184 
5); and movies that provide volume and surface visualizations of the stability of mean EPI intensity across 185 
sessions (Supplementary Videos 6 and 7; Supplementary Figure 4) and the stability of BOLD 186 
responses across sessions (Supplementary Videos 8 and 9). All movies are readily viewable online 187 
(https://osf.io/zyb3t/). The visualizations—in particular, Supplementary Video 9—indicate that the quality 188 
of the NSD data enables precision functional mapping33: activity patterns are fine-scale and highly reliable 189 
within individual subjects and these patterns are distinct across subjects. 190 
 191 
In addition to visual inspection, quantitative data quality metrics were computed for each NSD scan 192 
session. This was in fact done on a rolling basis as the data were acquired, allowing us to monitor data 193 
quality and provide performance bonuses to the subjects. Inspecting the metrics, we see that temporal 194 
signal-to-noise ratio (tSNR) is stable across scan sessions for each subject (Figure 2D, left). One 195 
subject, subject 8, exhibits low tSNR compared to the other subjects; this can be attributed to higher 196 
levels of head motion for this subject (Figure 2D, middle). We also observe that BOLD responses 197 
(quantified as median variance explained across voxels and runs by a simple ON-OFF GLM) are stable 198 
across scan sessions for each subject, though there is substantial variation in the strength of BOLD 199 
responses across subjects (Figure 2D, right). 200 
 201 
One feature we implemented in the pre-processing of the fMRI data was to interpolate the data on a fine 202 
temporal grid and a fine spatial grid in the same steps used to correct for slice timing differences and 203 
spatial displacements (e.g. head motion). This upsampling strategy preserves fine-scale detail that is 204 
present in the raw fMRI data due to the temporal jitter of the acquired fMRI volumes relative to the 205 
experimental paradigm and the spatial jitter of the acquired fMRI volumes relative to the brain’s 206 
anatomy32,34. An illustration of the benefits of upsampling is provided in Extended Data Figure 5. This 207 
example highlights the existence of fine-scale detail in fMRI image intensities (Extended Data Figure 5B, 208 
top row) as well as in BOLD responses extracted from the fMRI data (Extended Data Figure 5B, 209 
bottom row and Extended Data Figure 5C). Importantly, this fine-scale detail is replicable across 210 
different scan sessions (Extended Data Figure 5C, bottom and Extended Data Figure 5D), indicating 211 
that the upsampled preparation reveals meaningful detail that is lost under a non-upsampled approach. 212 
 213 
Extensive auxiliary measures to complement the NSD data 214 
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 215 
To enrich the fMRI data from the NSD experiment, we collected and prepared a large set of auxiliary 216 
measures. These measures include substantial amounts of resting-state data (minimum 100 minutes per 217 
subject), external physiological measures during the resting-state scan sessions, diffusion data and 218 
associated derivatives (white-matter tracts, structural connectivity matrices), and an extensive collection 219 
of manually defined regions of interest (ROIs) including retinotopic and category-selective areas as well 220 
as subregions of the thalamus and medial temporal lobe. Results and discussion of these resources can 221 
be found in Supplementary Note 1, Extended Data Figures 6–7, and Supplementary Figure 5. 222 
 223 
Accurate estimation of single-trial fMRI response amplitudes 224 
 225 
We performed a general linear model (GLM) analysis of the data from the NSD experiment in order to 226 
help streamline subsequent analyses of the data. The goal of the GLM was to obtain single-trial betas, 227 
i.e., estimates of the fMRI response amplitude of each voxel to each trial conducted. Given the low signal-228 
to-noise ratio of fMRI and the overlap of the hemodynamic response from trial to trial, estimating accurate 229 
betas is a challenging endeavor. We thus developed a novel GLM approach consisting of three 230 
components. First, we used a library of hemodynamic response functions (HRFs) derived from an initial 231 
analysis of the dataset as an efficient and well-regularized method for estimating voxel-specific HRFs 232 
(Figure 3A–C). Second, we adapted the GLMdenoise technique35 to the single-trial GLM framework, 233 
thereby enabling the use of data-driven nuisance regressors (Figure 3D). Third, to address the challenge 234 
posed by highly correlated single-trial regressors, we developed an efficient implementation of ridge 235 
regression36 and used this to regularize and improve the accuracy of the betas (Figure 3E). To assess 236 
the efficacy of these various GLM techniques, we generated three versions of the betas, reflecting 237 
increasing sophistication (Extended Data Figure 8A–C). Beta version 1 (b1) is the result of simply using 238 
a canonical HRF for all voxels. Beta version (b2) is the result of fitting an HRF to each voxel using the 239 
library-of-HRFs approach. Beta version (b3) uses the library-of-HRFs approach like b2 but also adds the 240 
use of GLMdenoise and ridge regression in an attempt to improve the accuracy of the betas. 241 
 242 
We quantified the quality of the different beta versions (b1, b2, b3) by calculating noise ceilings for 243 
individual voxels. The noise ceiling is a measure of trial-to-trial reliability, quantifying the percentage of 244 
variance in a voxel’s responses that can be attributed to the stimulus and not to measurement noise (see 245 
Methods). Surface maps of noise ceiling results reveal locations of reliable responses to the NSD stimuli: 246 
high noise ceilings are present in occipital cortex and extend into temporal and parietal cortex (Figure 3F 247 
and Supplementary Video 10). Importantly, the maps reveal very large increases in noise ceilings from 248 
b1 to b2 to b3, indicating that the additional GLM techniques incorporated into b2 and b3 improve 249 
reliability of responses. Detailed quantifications show that these improvements are highly consistent 250 
across voxels and subjects (Figure 3G and Supplementary Figure 6A) and that noise ceiling estimates 251 
are highly reliable (Supplementary Figure 6B). For b3, the noise ceiling levels in visual cortex are, on 252 
average, 36% (calculated by computing the median across the nsdgeneral ROI and then averaging 253 
across subjects). This means that a typical visual cortex voxel in the NSD dataset has associated with it a 254 
set of 10,000 responses (30,000 trials divided by 3 trials per image = 10,000 images) and a large 255 
percentage, 36%, of the variance in these 10,000 values is a signal that is, in theory, predictable. 256 
Expressed in terms of Pearson’s correlation (r), this is equivalent to a prediction accuracy of r = 0.60. 257 
Complementing the noise ceiling analysis, we also performed simple univariate analyses of the NSD 258 
betas (Extended Data Figure 8D–E); these analyses demonstrate that the NSD dataset contains high 259 
response reliability across trials within a subject as well as high response reliability across subjects. 260 
 261 
A massive increase in equivalent trials 262 
 263 
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To put the quality of the NSD data into perspective, we propose the concept of ‘equivalent trials’ which 264 
allows comparison of different datasets that vary in signal-to-noise ratio and trial distribution (see Methods 265 
for details). The next largest data collection effort that is similar in nature to NSD is BOLD500022. Using 266 
the same GLM analysis methods on both NSD and BOLD5000, we find that the signal-to-noise ratio per 267 
trial is approximately 0.260 for NSD and 0.187 for BOLD5000. Combining these values with the number 268 
of trials conducted in each dataset, we estimate that the total size of the NSD dataset is 213,000 trials ´ 269 
(0.260)2 = 14,399 equivalent trials, whereas the total size of BOLD5000 is 18,870 trials ´ (0.187)2 = 660 270 
equivalent trials. Thus, using the metric of equivalent trials, NSD can be viewed as 14,399/660 = ~22 271 
times as large as the BOLD5000 dataset. This is a massive increase in statistical power. Note that even if 272 
we do not take into account the higher SNR per trial in the NSD dataset, NSD still has substantially more 273 
subjects (8 vs. 4), trials per subject (26,625 vs. 4,718, on average), and hours of fMRI per subject (35.5 274 
vs. 13.7, on average) than BOLD5000. 275 
 276 
Successful recovery of retinotopy 277 
 278 
Having demonstrated the quality of the NSD data, we now turn to example analyses that illustrate the rich 279 
scientific insights that can be derived from the data. As a simple starting example, we fit a voxelwise pRF 280 
model that uses local contrast in the NSD images to account for the NSD betas. This simple model is 281 
expected to recover spatial tuning in early visual cortex where responses co-vary with stimulus energy37. 282 
Indeed, in all eight subjects, high-quality maps of angle and eccentricity estimates are obtained in early 283 
visual cortex, and these estimates extend all the way to the fovea (Extended Data Figure 9 and 284 
Supplementary Modeling Note 1). These results provide a check of the validity of the NSD betas. They 285 
also demonstrate that subjects were able to maintain central fixation reliably enough to support detailed 286 
mapping of visual space. This finding is consistent with our analysis of the eyetracking data (see 287 
Extended Data Figure 4). 288 
 289 
Reliable and long-term recognition memory effects 290 
 291 
The use of a continuous recognition task establishes NSD as one of the largest datasets relevant to 292 
human memory. Despite the challenging nature of the task, we find that subjects were able to 293 
successfully discriminate old images from new images (average d’ across subjects: 1.28, maximum: 1.47, 294 
minimum: 0.94). Further, recognition memory remained above chance even at long timescales between 295 
repetitions (Figure 4A). Specifically, for each session, we calculated a measure of recognition accuracy 296 
accounting for guessing (adjusted hit rate: hit rate minus false alarm rate) and binned this measure by the 297 
time since last exposure (considering only those trials involving a previously shown image). At the group 298 
level, subjects exhibit performance levels greater than chance (adjusted hit rate > 0) in all measured 299 
intervals, ranging from one second to one year. At the level of individuals, all subjects show a positive 300 
adjusted hit rate in the longest time bin for which data are available for every subject (when binning on a 301 
log scale; 7 out of 8 subjects when binning on a linear scale). These results indicate that from its 302 
behavioral component alone, NSD is powered to address questions concerning human memory spanning 303 
short (seconds) to relatively long (months) timescales. 304 
 305 
But what about neural effects? To assess whether recognition effects are present in the fMRI data, we 306 
performed two-sample t-tests contrasting NSD betas observed for hits with NSD betas observed for 307 
correct rejections (the so-called ‘old/new effect’38). We find highly consistent old/new effects at the level of 308 
individual scan sessions (Figure 4B, top; see also Supplementary Figure 7). Moreover, these effects 309 
occur in expected frontal and parietal regions39, and persist at the group level (Figure 4B, bottom). The 310 
scale and statistical power afforded by the NSD dataset also provides additional insight. Whereas old/new 311 
effects are typically studied using group-level analyses, the quality of the NSD dataset reveals highly 312 
statistically significant results at the level of individual subjects. Indeed, when pooling trials across all NSD 313 
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scan sessions, several subjects exhibit statistically significant activity differentiating hits and correct 314 
rejections in nearly the entire cerebral cortex (see results for a representative subject in Figure 4B, top). 315 
Reminiscent of past datasets employing extensive sampling of individuals40, the current results suggest 316 
that the extent of cortex engaged by basic memory processes is much more widespread than previously 317 
appreciated, though a careful consideration of effect sizes would be important for a full understanding of 318 
the effect. 319 
 320 
Rich stimulus sampling for probing brain representations 321 
 322 
NSD samples a huge variety of natural scenes. To gain insight into the breadth of stimulus sampling 323 
available, we constructed representational dissimilarity matrices (RDMs) from the NSD betas and 324 
performed t-distributed stochastic neighbor embedding41 (t-SNE) to visualize the underlying 325 
representations. We computed t-SNE embeddings in different regions along the ventral visual pathway for 326 
an example subject (Figure 5A). These embeddings reflect arrangements of stimuli that are driven by the 327 
overall similarity of multivoxel activity patterns in the brain, independent of their anatomical organization 328 
within a given ROI. Visualizing the data in this way reveals intriguing patterns of semantic representation 329 
that are clearly visible by eye. For example, by color-coding the resulting embeddings according to 330 
animacy attributes (Figure 5B), we find that in posterior ventral temporal cortex (pVTC), there is a clear 331 
large-scale pattern progressing from images containing people (gray dots; lower left), images containing 332 
animals (red dots; middle), and images containing inanimate objects (blue dots; upper right), whereas the 333 
pattern is not present in early visual areas V1, V2, and V3. This aspect of semantic representation is 334 
consistent with previous studies42,43. 335 
 336 
Other intriguing patterns are also visible. In anterior ventral temporal cortex (aVTC), the animacy 337 
progression is present to some extent, but a different, more clustered representation emerges that 338 
presumably reflects more complex categorical and semantic clusters. Indeed, zooming in on small 339 
sections of the t-SNE embedding for aVTC reveals that these clusters contain images with relatively 340 
homogeneous semantic content (Figure 5C): the blue cluster is dominated by images of round edible 341 
objects, while the gray cluster is dominated by images of people interacting with objects. Note that the 342 
clustering of semantically related images does not necessarily mean that these representations are truly 343 
semantic in the sense of being invariant or independent of visual features; the clustering could be driven 344 
by certain visual features that are diagnostic of object categories44. To tease apart these possibilities, 345 
further detailed analyses would be necessary. Overall, these findings show how simple visual inspections 346 
of the NSD dataset can be used to generate hypotheses about visual representations in the human brain. 347 
 348 
To further characterize brain representations using a quantitative analysis, we calculated how well brain 349 
RDMs are captured by a model RDM constructed from category labels in the COCO image dataset. 350 
Consistent with the clustering observed in the t-SNE embeddings, we find that categorical structure is 351 
pronounced in VTC compared to early visual areas (Figure 5D). Finally, to assess the utility of NSD for 352 
investigating similarities of brain representations across subjects, we isolated images that were common 353 
across subjects and created a second-order RDM that quantifies the similarity of brain RDMs across ROIs 354 
and subjects (Figure 5E). In this second-order RDM, we observe high levels of consistency in each ROI’s 355 
representation across subjects (red outlines). We also observe distinct representations across ROIs, with 356 
the largest distinctions occurring between early visual areas and VTC. One noticeable finding is the 357 
existence of strong off-diagonal elements (white arrows); these elements indicate spatial noise 358 
correlations that are typical in fMRI and other neural measurement techniques. To counteract these noise 359 
correlations, one simple approach is to compare representations across ROIs using data from distinct 360 
trials45. To further summarize the second-order RDM, we computed the average correlation of brain 361 
RDMs across all ROI pairs, restricting this calculation to distinct subjects in order to avoid the effects of 362 
spatial noise correlations (Figure 5F). We observe that correlations are highest for brain RDMs from the 363 
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same ROI (e.g. a given subject’s V1 RDM is more correlated with other subjects’ V1 RDMs compared to 364 
other ROIs), confirming consistencies in brain representations across subjects (for a complementary 365 
univariate analysis of across-subject consistency, see Extended Data Figure 8D–E). 366 
 367 
A brain-optimized neural network model of the visual system 368 
 369 
One of the main motivations for NSD was to amass sufficient sampling of brain activity to be able to drive 370 
data-hungry machine learning techniques. As an intriguing test case, we specifically investigated whether 371 
we could successfully use the scale of NSD to train, from scratch, a deep convolutional neural network 372 
(CNN) to accurately predict brain activity17. Adopting the framework of encoding models46, we took NSD 373 
betas from visual areas V1–hV4, divided these data into a training set (used for parameter tuning) and 374 
validation set (used to assess prediction performance), and evaluated how accurately different 375 
computational models predict brain responses in the validation set based on the presented image. The 376 
primary encoding model of interest is based on a new network we refer to as ‘GNet’, a brain-optimized 377 
CNN whose parameters are trained using image-response pairings observed in the training set. For 378 
comparison, we also evaluated an encoding model based on AlexNet47, a task-optimized CNN whose 379 
parameters are pre-trained using explicit labels of objects taken from an image database. AlexNet has 380 
been previously shown to provide state-of-the-art performance in modeling visual responses15,19. Finally, 381 
we included a simple V1-like control model based on oriented Gabor filters24. Details of modeling 382 
procedures are provided in Supplementary Modeling Note 2 and Extended Data Figure 10. 383 
 384 
Varying the amount of training data provided to the models, we find that the performance of the GNet-385 
based encoding model is relatively poor when only small amounts of training data are available (Figure 386 
6A, orange arrows). This is expected since the feature extractors in GNet are not pre-trained and thus 387 
require data for tuning. However, when large amounts of training data are available, the GNet model 388 
exhibits an impressive increase in performance, achieving approximate parity with the AlexNet-based 389 
encoding model (Figure 6A, blue arrows). Interestingly, when we trained a single GNet model using 390 
brain activity from multiple subjects, we find that the model is able to outperform the AlexNet model (two-391 
tailed paired t-test across subjects, p = 0.013), albeit modestly (Figure 6A, red arrows). Noticeably, the 392 
simple Gabor model accounts for substantial variance in the responses; nonetheless, the more complex 393 
CNN-based models provide additional predictive power, consistent with previous observations48. For 394 
additional insight into model performance, we compared voxel-wise performance levels of the GNet 395 
model to noise ceiling estimates (Figure 6B). Across voxels, prediction accuracy is tightly correlated with 396 
the noise ceiling, suggesting that voxel-wise differences in prediction accuracy simply reflect differences 397 
in signal-to-noise ratio. In addition, performance levels are close to, but do not reach, the noise ceiling. 398 
Finally, cortical surface maps indicate voxel-wise performance levels vary across foveal and peripheral 399 
representations (Figure 6C). 400 
 401 
The demonstration that an encoding model based on a brain-optimized CNN (GNet) outperforms an 402 
encoding model based on a task-optimized CNN (AlexNet) is significant for two reasons. First, it indicates 403 
NSD is large enough to successfully train a complex neural network architecture. Had the NSD dataset 404 
been smaller in scale or lower in quality, qualitatively different patterns of model performance would have 405 
been obtained (in Figure 6A, compare orange arrows reflecting a few thousand trials to red arrows 406 
reflecting tens of thousands of trials). Second, the successful training of a brain-optimized CNN opens the 407 
possibility of new avenues of investigation into the nature of the features used in CNNs. It is an interesting 408 
open question whether the features learned by task-optimized networks like AlexNet are similar to, or 409 
diverge from, the features present in brain-optimized networks like GNet. In general, brain-optimized 410 
networks17 are a useful alternative to task-optimized networks16,20, as the narrowly defined tasks that task-411 
optimized networks are typically trained to solve do not necessarily respect the diversity of functions 412 
supported by the human visual system49 nor necessarily match properties found in biological visual 413 
systems50.   414 
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Discussion 415 
 416 
In the last several years, there have been a number of large-scale neuroimaging datasets that have been 417 
made publicly available for re-use (e.g., refs 5,33,51–53). Several distinguishing aspects of the present work 418 
set NSD apart from past datasets. One is the unprecedented scale of the dataset. NSD shares the 419 
motivation of recent ‘deep’ (or ‘precision’) neuroimaging efforts33,54–57 seeking to amass large amounts of 420 
data from individual subjects, as opposed to modest amounts of data on a large number of subjects. In 421 
this context of deep neuroimaging, NSD is, to our knowledge, the most extensive fMRI data collection 422 
effort that has been performed to date. This can be gauged not only in terms of the number of hours of 423 
fMRI data acquisition per subject (30–40 hours of data for each of 8 subjects on the core NSD 424 
experiment) and the high spatial resolution of the acquired data (1.8 mm), but also the wealth of 425 
additional measures beyond the core experiment, including substantial amounts of resting-state and 426 
diffusion data, physiological data, and functional localizers. The availability of extensive measures 427 
provides the opportunity to build complete models of how individual brains support vision and memory58. 428 
Of course, the emphasis on depth in individuals comes at the cost of sampling fewer individuals; datasets 429 
emphasizing large numbers of participants, such as the Human Connectome Project5, are better suited 430 
for studying variability in the general population and how psychological traits broadly relate to brain 431 
structure and function. 432 
 433 
A second aspect is the unusually high quality of the data. Although quality of neuroimaging data is more 434 
complex to assess than quantity, assessment of data quality is essential since MRI data have relatively 435 
low sensitivity and are prone to errors and artifacts. In particular, when acquiring massive datasets, there 436 
is a risk of accumulating unknown sources of noise and artifact. The work presented in this paper (and in 437 
the accompanying files in the data release) guards against this possibility by crafting a customized and 438 
highly optimized approach to pre-processing the NSD data and providing comprehensive documentation 439 
of the high data quality (see also Supplementary Note 2). Several factors likely contributed to the high 440 
data quality: these include the use of ultra-high magnetic field strength (7T) which enhances BOLD 441 
contrast-to-noise ratio; the screening, training, and incentivization of participants; the detailed inspection 442 
and supervision of data processing; and the large network of collaborators who helped guide the design 443 
and trajectory of the dataset. 444 
 445 
A third aspect of the present work lies in the novel analysis techniques developed for improved GLM 446 
analysis of fMRI time-series data. These include (i) an efficient and robust method to estimate voxel-447 
specific HRFs, (ii) adaptation of the GLMdenoise technique35 to a single-trial GLM framework, and (iii) 448 
development of ridge regression as an effective method for regularizing single-trial response estimates. 449 
These three techniques have been integrated into a toolbox that can be applied to other neuroimaging 450 
datasets, and are the subject of a forthcoming paper. An important lesson stemming from our results is 451 
that well-executed data collection is important but not the only factor to consider: data preparation 452 
methods exert a major influence on the quality of a dataset and hence its scientific value. One can view 453 
improvements in data quality as equivalent to increases in data quantity, in the sense that analysis 454 
methods that reduce unwanted variability (noise) can be interpreted as increasing the effective amount of 455 
data collected35. Thus, by improving data quality, the methods introduced with NSD are contributing to the 456 
massive scale of the dataset. 457 
 458 
The NSD dataset has many potential applications. Given its extensive sampling of natural scenes (70,566 459 
distinct images aggregated across 8 subjects) and high signal-to-noise ratio, the dataset will be useful for 460 
investigating a variety of phenomena in low-, mid-, and high-level vision. In addition, the memory 461 
component of the NSD experiment provides a unique opportunity to study the neural mechanisms of both 462 
short- and long-term memory (ranging from seconds to many months), as well as potential interactions 463 
between vision and memory. From a methodological perspective, the repeated scanning of individuals 464 
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using a consistent experimental manipulation (up to 40 scan sessions of the NSD experiment per subject) 465 
provides a unique opportunity for development and evaluation of neuroimaging pipelines. Finally, perhaps 466 
the most exciting use of NSD is as a common dataset to bridge the disciplines of cognitive science, 467 
neuroscience, and artificial intelligence21. As we have shown in the context of deep neural network 468 
modeling (see Figure 6), there are sufficient data in NSD to successfully drive the training of neural 469 
network models with thousands of free parameters. This demonstration exemplifies how NSD—with its 470 
large amounts of carefully curated fMRI data collected during a rich cognitive paradigm—enables data-471 
driven approaches towards understanding the complexities of information processing in the brain. 472 
  473 
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Figure Captions 508 
 509 
Figure 1. Design of the NSD experiment. A, Trial design. While maintaining central fixation, 510 
participants viewed sequences of color natural scenes and judged whether each image had been 511 
previously shown at any point in the past. The scenes, taken from Microsoft’s COCO14, are richly 512 
annotated with object information (as depicted). B, Run and session design. Each run lasted 5 513 
minutes and consisted of 62 or 63 stimulus trials with occasional interspersed blank trials. Each 514 
scan session consisted of 12 runs (750 stimulus trials). C, Timeline of 7T fMRI scan sessions. 515 
Each subject participated in an initial screening session (prffloc), 30–40 NSD core sessions, and 516 
two final sessions (nsdsynthetic, nsdimagery). The first NSD core session corresponds to day 0. 517 
D, Behavioral performance. For each of three trial types, we quantify the percentage of trials on 518 
which the subject indicated an ‘old’ response. 519 
 520 
Figure 2. Overview of acquired data. A, Auxiliary fMRI experiments. Data from the pRF and 521 
fLoc experiments were used to define retinotopic visual areas and category-selective regions, 522 
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respectively. Resting-state data were collected before and after the NSD runs in a subset of the 523 
NSD core sessions (totaling 100 or 180 minutes per subject). B, Available measures. Examples 524 
of the actual data are depicted. C, Participant selection. Data quality from the initial screening 525 
session was used to rank a set of 14 participants. On the right is an illustration of one measure 526 
contributing to the ranking, specifically, variance explained in the fLoc experiment (one slice per 527 
participant; identical color range). The inset compares the participant ranking against the b3 noise 528 
ceiling calculated on the full NSD dataset (see Figure 3). A line fit to the 8 NSD subjects (green 529 
dots) is extrapolated to predict noise ceilings for the subjects who were not selected for 530 
participation in NSD (red circles). D, Metrics of data quality (for details, please see ‘Data quality 531 
metrics’ in the Methods). Results for individual subjects (thin colored lines) and the median across 532 
subjects (thick black line) are shown. The insets show detail on tSNR and head motion for one 533 
sample run (see Supplementary Figures 1–2 for more information). 534 
 535 
Figure 3. Improving signal-to-noise ratio through novel response estimation and denoising 536 
methods. A–C, Library of HRFs. Hemodynamic response functions (HRFs) were estimated 537 
within a subspace spanned by 3 principal components (PCs). Distributions of voxel-specific HRFs 538 
are shown for individual subjects (panel A) and the group average (panel B). These distributions 539 
reside on the unit sphere with coordinate axes corresponding to 3 PC timecourses (see panel B, 540 
inset). We defined a series of points on the unit sphere (cyan dots), and the timecourses 541 
associated with these points are used as the HRF library (panel C). D, GLMdenoise. Horizontal 542 
lines indicate the average number of GLMdenoise regressors identified in a scan session (1.8-543 
mm preparation; error bars indicate bootstrapped 68% confidence intervals). E, Ridge regression. 544 
Optimal ridge regression fractions are shown for an example scan session (subject 5, nsd10, 1-545 
mm preparation). F, Noise ceilings for the case where responses are averaged across 3 trials. 546 
Results from individual subjects (nativesurface preparation) were mapped to fsaverage and then 547 
averaged. Right inset shows results thresholded at 15% on the inflated left hemisphere (see also 548 
Supplementary Video 10). G, Performance summary. Each bar indicates the median noise 549 
ceiling across vertices in the nsdgeneral ROI. 550 
 551 
Figure 4. Reliable and long-term recognition memory effects. A, Behavioral recognition 552 
effects. Adjusted hit rate indicates recognition accuracy accounting for guessing (hit rate minus 553 
false alarm rate), and is binned by time between repetitions on a linear (left) or log scale (right). 554 
Dashed line indicates chance performance. Each dot in each bin summarizes relevant trials from 555 
one scan session. Black line indicates the mean across subjects, with ribbon indicating ± 1 SEM. 556 
B, Neural recognition effects. We performed two-sample t-tests on NSD betas contrasting ‘hits’ > 557 
‘correct rejections’. All results are shown on a flattened left hemisphere fsaverage surface and 558 
thresholded at |t| > 3 (inset shows inflated surface). Tests were performed for trials taken from 559 
individual NSD scan sessions (columns 1 through 4) as well as for trials pooled across all NSD 560 
scan sessions (column 5). In addition, we perform a control in which trial labels in the pooled 561 
analysis are shuffled (column 6). Results for subject 1 (top row) and a simple average of results 562 
across subjects (bottom row) are shown. 563 
 564 
Figure 5. Representational similarity analysis (RSA) reveals transformations of 565 
representations along the ventral visual stream. A, Illustration of fsaverage ROIs used for the 566 
RSA analysis. B, t-SNE embedding for each ROI in an example subject (subject 1). Each dot 567 
represents a distinct image (total 10,000). Using category labels from the COCO image dataset, 568 
we color each dot according to whether the associated image contains particular combinations of 569 
people, animals, and inanimates. C, t-SNE embedding for anterior ventral temporal cortex with 570 
actual images depicted. Insets highlight an inanimate cluster (blue inset) and a cluster of people 571 
with inanimate objects (gray inset). D, Categorical brain repesentations. We plot the correlation 572 
between brain RDMs and a model RDM constructed from category labels in the COCO dataset. 573 
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Color shaded regions indicate within-subject error (mean and standard error across distinct 574 
groups of images), while the gray shaded region indicates across-subject error (mean and 575 
standard error across subjects). E, Similarities of brain representations across ROIs and subjects. 576 
Depicted are correlations across brain RDMs obtained for different ROIs and subjects. Thin white 577 
lines separate groups of 8 subjects. F, Quantitative summary. We summarize the results of panel 578 
E by averaging the upper triangle of each group of 8 ´ 8 subjects, reflecting the correlation of 579 
RDMs from different subjects. Shaded regions indicate standard errors estimated by 580 
bootstrapping subjects with replacement. 581 
 582 
Figure 6. Prediction of brain activity using a brain-optimized neural network. We used 583 
encoding models46 to predict voxel activity in V1–hV4. NSD betas were divided into a training set 584 
(consisting of up to 9,000 images ´ 3 trials = 27,000 training samples per subject) and validation 585 
set (consisting of up to 1,000 images ´ 3 trials = 3,000 validation samples per subject), and the 586 
accuracy of different encoding models was quantified as the voxel-wise correlation between 587 
model predictions and responses observed in the validation set. A, Performance as a function of 588 
amount of training data used. Models include an encoding model based on AlexNet which is a 589 
task-optimized neural network (blue); encoding models based on GNet which is a brain-optimized 590 
neural network trained using data from single subjects (orange) or data from multiple subjects 591 
(red); and a V1-like control model based on Gabor filters (purple). Plotted lines and error bars 592 
indicate mean and standard deviation across results obtained from different bootstrap samples of 593 
the data. B, Detailed view of the performance of the multi-subject GNet model for a representative 594 
subject. C, Surface maps depicting spatial distribution of validation accuracy for the multi-subject 595 
GNet model. 596 
  597 
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Methods 705 

 706 
Subject recruitment 707 
 708 
The NSD study was advertised to the University of Minnesota community. We sought to recruit right-709 
handed individuals (18–65 years old) with no known cognitive deficits nor color blindness and with normal 710 
or corrected-to-normal vision. Those who were interested in participating were contacted for a phone 711 
interview to explain the nature of the study and to screen them for eligibility. We discussed the long-term 712 
nature of the study, the time commitment it would involve, and the feasibility of traveling to the scanner on 713 
a regular basis. We paid attention to the communicativeness of potential participants and their general 714 
attitude towards study participation. Selecting participants whom we were confident would provide high-715 
quality data was more important to us than obtaining a random sample of the general population. Based 716 
on the phone interviews, we invited 14 people who we felt were strong candidates to participate in an 717 
initial 7T fMRI screening session. Of these, 8 were selected to participate in the full NSD experiment. 718 
 719 
Subjects 720 
 721 
Eight subjects (two males, six females; age range 19–32) participated in the NSD dataset (subj01–722 
subj08). There were six additional subjects (four males, two females; age range 20–53) who participated 723 
in the initial 7T fMRI screening session but not in the remainder of data collection. No statistical methods 724 
were used to pre-determine the sample size; rather, our experimental approach58 emphasizes collecting 725 
extensive data from each subject, which enables the demonstration and replication of effects in individual 726 
subjects. Subjects were naïve to the design of the NSD dataset. All subjects had normal or corrected-to-727 
normal visual acuity. Informed written consent was obtained from all subjects, and the experimental 728 
protocol was approved by the University of Minnesota Institutional Review Board. Subjects were 729 
compensated at a rate of $30 per hour, plus performance bonuses. Additional subject information 730 
including height, weight, handedness, and visual acuity was logged and is available online. 731 
 732 
Subjects participated in a number of neuroimaging and behavioral data collection sessions (a full 733 
breakdown is provided in Extended Data Figure 2). Neuroimaging included 3T structural scan sessions 734 
and 7T functional scan sessions. The 7T functional scan sessions included an initial screening session 735 
termed ‘prffloc’, referring to the population receptive field (pRF) and functional localizer (fLoc) experiments 736 
conducted in that session. The 7T sessions also included, for each subject, 30–40 sessions in which the 737 
main NSD experiment was conducted (‘nsd01–nsd40’). These sessions are collectively termed the ‘NSD 738 
core’. In some of these sessions, resting-state data were acquired before and after the NSD experiment. 739 
Finally, the 7T sessions also included two sessions conducted after completion of the NSD core; these 740 
sessions, termed ‘nsdsynthetic’ and ‘nsdimagery’, involved measuring responses to synthetic stimuli and 741 
cognitive task manipulations (including mental imagery), respectively. The total number of 7T fMRI scan 742 
sessions were 43, 43, 35, 33, 43, 35, 43, and 33 for subj01–subj08, respectively. The average number of 743 
hours of resting-state fMRI conducted for each subject was 2.0 hours, and the average number of hours 744 
of task-based fMRI conducted for each subject was 38.5 hours. Each subject also participated in several 745 
behavioral assessments after scanning was complete. These included a variety of behavioral measures 746 
(‘nsdpostbehavior’), a final memory test (‘nsdmemory’), and an image-similarity assessment 747 
(‘nsdmeadows’). 748 
 749 
MRI data acquisition 750 
 751 
MRI data were collected at the Center for Magnetic Resonance Research at the University of Minnesota. 752 
Some data were collected using a combination of a 3T Siemens Prisma scanner and a standard Siemens 753 
32-channel RF head coil. Most data were collected using a combination of a 7T Siemens Magnetom 754 
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passively-shielded scanner and a single-channel-transmit, 32-channel-receive RF head coil (Nova 755 
Medical, Wilmington, MA). Illustrations of the different types of MRI data acquired are provided in Figure 756 
2B. Below we summarize the scanning protocols (full protocol printouts are available online). 757 
 758 
At 3T, we collected a number of anatomical measures (T1, T2, diffusion, angiogram). The motivation for 759 
collecting data at 3T was to ensure acquisition of T1 volumes with good gray/white-matter contrast and 760 
homogeneity, which is difficult to achieve at ultra-high field59. To increase contrast-to-noise ratio and 761 
enable the ability to assess reliability, we acquired several repetitions of T1- and T2-weighted volumes. 762 
For each subject, we collected between 6–10 scans of a whole-brain T1-weighted MPRAGE sequence 763 
(0.8-mm isotropic resolution, TR 2400 ms, TE 2.22 ms, TI 1000 ms, flip angle 8°, bandwidth 220 Hz/pixel, 764 
no partial Fourier, in-plane acceleration factor (iPAT) 2, TA 6.6 min/scan) and 2–3 scans of a whole-brain 765 
T2-weighted SPACE sequence (0.8-mm isotropic resolution, TR 3200 ms, TE 563 ms, bandwidth 744 766 
Hz/pixel, no partial Fourier, in-plane acceleration factor (iPAT) 2, TA 6.0 min/scan). In addition to T1 and 767 
T2 data, we also acquired 4 high angular resolution diffusion-weighted spin-echo EPI scans, using 768 
protocols from the Lifespan Human Connectome Project Development effort60. These protocols involved 769 
varying the number of diffusion directions and the phase-encode direction (1.5-mm isotropic resolution, 770 
TR 3230 ms, TE 89.20 ms, flip angle 78°, refocusing flip angle 160°, bandwidth 1700 Hz/pixel, echo 771 
spacing 0.69 ms, partial Fourier 6/8, no in-plane acceleration, multiband slice acceleration factor 4, TA 772 
5.6 min/scan for 99 directions, TA 5.7 min/scan for 100 directions). The 4 scans included 99 directions AP 773 
(anterior-to-posterior phase-encode direction), 99 directions PA (posterior-to-anterior phase-encode 774 
direction), 100 directions AP, and 100 directions PA. Diffusion volumes were acquired at b-values of 0, 775 
1,500, or 3,000 s/mm2. We also acquired an angiogram using a time-of-flight (TOF) multi-slab 3D 776 
sequence (0.39 mm ´ 0.39 mm ´ 0.5 mm resolution, TR 19.0 ms, TE 2.91 ms, flip angle 18°, bandwidth 777 
186 Hz/pixel, phase partial Fourier 6/8, slice partial Fourier 6/8, in-plane acceleration factor (iPAT) 2, TA 778 
5.5 min). 779 
 780 
At 7T, we collected functional data and associated fieldmaps and a few additional anatomical measures 781 
(venogram, high-resolution T2). Functional data were collected using gradient-echo EPI at 1.8-mm 782 
isotropic resolution with whole-brain (including cerebellum) coverage (84 axial slices, slice thickness 1.8 783 
mm, slice gap 0 mm, field-of-view 216 mm (FE) ´ 216 mm (PE), phase-encode direction anterior-to-784 
posterior, matrix size 120 ´ 120, TR 1600 ms, TE 22.0 ms, flip angle 62°, echo spacing 0.66 ms, 785 
bandwidth 1736 Hz/pixel, partial Fourier 7/8, in-plane acceleration factor (iPAT) 2, multiband slice 786 
acceleration factor 3). The use of moderate spatial resolution capitalizes on the signal-to-noise ratio 787 
benefits provided by ultra-high magnetic field strength. At the beginning of each 7T session, we acquired 788 
a short test EPI scan and adjusted the gain factor (FFT scale factor) accordingly to ensure large dynamic 789 
range while avoiding clipping. Empirical measurements indicate that the acoustic noise caused by the EPI 790 
sequence is 112 dBA; assuming a conservative noise reduction estimate of 26 dB for the earplugs that 791 
we used, the resulting noise level is 86 dBA, which can be safely endured for approximately 8–16 792 
continuous hours according to guidelines from the National Institute for Occupational Safety and Health 793 
(NIOSH) 1998 and Occupational Safety and Health Administration (OSHA) 2009. 794 
 795 
In addition to the EPI scans, the 7T sessions also included dual-echo fieldmaps for post-hoc correction of 796 
EPI spatial distortion (same overall slice slab as the EPI data, 2.2 mm ´ 2.2 mm ´ 3.6 mm resolution, TR 797 
510 ms, TE1 8.16 ms, TE2 9.18 ms, flip angle 40°, bandwidth 301 Hz/pixel, partial Fourier 6/8, TA 1.3 798 
min/scan). Fieldmaps were periodically acquired over the course of each scan session to track changes 799 
in the magnetic field (details provided below). In one of the 7T sessions held for each subject, we 800 
acquired a venogram using a susceptibility-weighted imaging (SWI) 3D sequence (0.5625 mm ´ 0.5625 801 
mm ´ 0.6 mm resolution, TR 28 ms, TE 21 ms, flip angle 17°, bandwidth 120 Hz/pixel, phase partial 802 
Fourier 6/8, slice partial Fourier 6/8, in-plane acceleration factor (iPAT) 3, TA 10.1 min). This venogram 803 
could be useful for investigating the impact of vasculature on fMRI signals32. In addition, for the purposes 804 
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of hippocampal segmentation, we acquired in one of the 7T sessions a high-resolution T2-weighted TSE 805 
scan (0.357 mm ´ 0.357 mm ´ 1.5 mm resolution, 56 oblique slices oriented perpendicular to the long 806 
axis of the hippocampus, field-of-view 160 mm (FE) ´ 156.4 mm (PE), TR 16000 ms, TE 53 ms, 807 
bandwidth 100 Hz/pixel, no partial Fourier, in-plane acceleration factor (iPAT) 2, turbo factor 15, TA 4.5 808 
min). 809 
 810 
In the prffloc 7T fMRI session, the acquisition structure was [F BWLL F BWLL F BWLL F], where F 811 
indicates a fieldmap, B indicates a multibar run of the pRF experiment (188 TRs), W indicates a 812 
wedgering run of the pRF experiment (188 TRs), and L indicates a run of the fLoc experiment (195 TRs). 813 
In the NSD 7T fMRI sessions, the acquisition structure was either [F NNNN F NNNN F NNNN F] or [F 814 
RNNNN F NNNN F NNNNR F], where F indicates a fieldmap, N indicates a run of the NSD experiment 815 
(188 TRs), and R indicates a resting-state run (188 TRs). 816 
 817 
Stimulus display and scanner peripherals 818 
 819 
Ear plugs were used to reduce acoustic noise experienced by the subjects. To minimize head motion, we 820 
acquired a headcase61 for each of the 8 NSD subjects (Caseforge, Berkeley, CA; http://caseforge.co) and 821 
deployed the headcases starting from the second NSD core scan session (nsd02). To ensure maximal 822 
subject comfort, only the posterior half of the headcases were used (omitting the anterior half). Standard 823 
foam padding was used to mitigate head motion prior to that point (prffloc, nsd01). 824 
 825 
Stimuli were presented using a Cambridge Research Systems BOLDscreen 32 LCD monitor positioned at 826 
the head of the 7T scanner bed, placed flush against the scanner bore. We chose to use an LCD monitor 827 
because it delivers a sharp, high-quality image, in contrast to typical scanner setups involving projectors 828 
and backprojection screens. The monitor operated at a resolution of 1920 pixels ´ 1080 pixels at 120 Hz. 829 
The size of the full monitor image was 69.84 cm (width) ´ 39.29 cm (height). Subjects viewed the monitor 830 
via a mirror mounted on the RF coil. The viewing distance was 5 cm from the subjects’ eyes to the mirror 831 
+ 171.5 cm from the mirror to the monitor image = 176.5 cm total. Measurements of the display spectral 832 
power density were obtained using a PR-655 spectroradiometer (Photo Research). The BOLDscreen is 833 
designed by the manufacturer to behave as a linear display device, and our measurements confirmed this 834 
to be the case. 835 
 836 
We determined the maximum square extent visible in both eyes given the constraints of the RF coil to be 837 
8.4° ´ 8.4° (714 pixels ´ 714 pixels). Thus, stimuli from the various experiments (e.g., pRF, fLoc, NSD) 838 
were adjusted to fill 8.4° of visual angle (details provided below). At the beginning of each scan session, 839 
we made an effort to position the monitor in the same location relative to the scanner and to position the 840 
subject’s head and RF coil in the same location relative to the scanner. We also used a calibration square 841 
(8.4° in size) to determine any incidental horizontal or vertical offsets needed in that session in order for 842 
the participant to see the entire square in each eye, unobstructed. Given these efforts, we believe that 843 
consistent and high-quality visual stimulation was achieved across scan sessions. Nonetheless, we 844 
caution that due to limitations in positioning and/or potential drift over the course of a scan session, some 845 
slight occlusion of the corners of the 8.4° ´ 8.4° square extent may have occurred some of the time. 846 
 847 
A Mac Pro computer controlled stimulus presentation using code based on Psychophysics Toolbox 848 
3.0.1462,63. Behavioral responses were recorded using a button box (Current Designs, Philadelphia, PA). 849 
In some scan sessions (nsd21–nsd30, the same sessions in which the primary set of resting-state data 850 
were acquired), physiological data were collected using a pulse oximeter and a respiratory belt (stock 851 
Siemens equipment). Care was taken to secure the oximeter with tape to the left index finger of the 852 
subject and to secure the respiratory belt snugly to the subject’s torso. Physiological data were carefully 853 
synchronized with the fMRI data and cropped, but are not further analyzed in this paper. 854 
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 855 
In several scan sessions (see Extended Data Figure 2 for details), eyetracking was performed using an 856 
EyeLink 1000 system (SR Research, Mississauga, Ontario, Canada) combined with a custom infrared 857 
illuminator mounted on the RF coil. Eyetracking was performed for the left eye, and eyetracking data were 858 
obtained at 2000 Hz using the Pupil-CR centroid mode. We caution that the eyetracking data are variable 859 
in quality, as achieving sufficient pupil contrast was often difficult given the constraints of the scanner 860 
setup. For information complementary to the eyetracking data, we also captured video recordings of the 861 
eyetracker computer display (see Figure 2B) using a cell phone secured to a mount. These video 862 
recordings are useful for checking the accuracy of the eyetracker, and provide information in scan 863 
sessions where pupil tracking and data acquisition failed completely. Details of pre-processing and 864 
analysis of eyetracking data are provided in Supplementary Note 3. 865 
 866 
Day-to-day acquisition procedures 867 
 868 
Participants were scanned roughly once a week, with attempts to keep a regular weekly scan time. At the 869 
beginning of each session (starting at approximately nsd07), participants were asked to rate on a five-870 
point scale how well they slept the night before, their mood, how hungry they were, and their stress level. 871 
We also asked whether they had had caffeine in the past three hours. At the end of each scan session, 872 
participants were asked to rate how comfortable they were during the session and to provide any general 873 
feedback they had about the session. These various measures, as well as any technical issues that arose 874 
during the session, were logged onto a spreadsheet (available online). 875 
 876 
In the first several scan sessions, we emphasized the importance of fixation and performed simple tests 877 
prior to scanning in which we watched the subject’s eyes while they attempted to fixate and while they 878 
deliberately broke fixation. This was done to help subjects understand what good fixation feels like. In 879 
every scan session, we reminded subjects about the importance of fixation and about the correct 880 
mapping between buttons and responses. 881 
 882 
During data collection, we monitored aspects of data quality including overall image quality, head motion, 883 
quality of physiological data, and behavioral performance. Between functional runs, we checked in with 884 
the subject to assess their energy level, enthusiasm, and compliance. If we noticed any substantial drops 885 
in response rate, we politely notified the subject and offered short breaks before continuing. 886 
 887 
To promote subject engagement and retention, participants were given the opportunity to earn monetary 888 
bonuses that gradually increased in size over the course of the NSD study. These bonuses were 889 
contingent on achieving certain performance levels on data quality metrics such as head motion and 890 
response rate (details available online). Information regarding performance was supplied to participants in 891 
the form of a continually updated “leaderboard” figure. We found that this figure greatly helped to motivate 892 
participants. 893 
 894 
The NSD experiment 895 
 896 
Basic design 897 
 898 
In the NSD experiment, participants performed a long-term continuous recognition task while viewing a 899 
large number of color natural scenes. We chose this recognition task because it engages and challenges 900 
the observer and is unbiased with respect to the specific content of the images (unlike other tasks such 901 
as animacy judgment). In addition, it infuses the experiment with a rich memory dimension that is likely of 902 
interest to memory researchers. A total of 73,000 distinct images were prepared. We intended that the 8 903 
NSD subjects would each view 10,000 distinct images presented 3 times each over the course of 40 scan 904 
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sessions. We designated a special set of 1,000 images (chosen randomly from the full set of prepared 905 
images) as shared images that would be seen by all subjects (referred to as the ‘shared1000’); all other 906 
images would be mutually exclusive across subjects. The distribution of the 3 presentations of each 907 
image was tightly controlled, and subjects were naïve as to both the number and distribution of the 908 
presentations. Note that because some NSD subjects completed only 30 of the 40 prescribed scan 909 
sessions, there are ultimately 515 images, out of the shared 1,000 images, that are viewed all 3 times by 910 
all 8 subjects (referred to as the ‘shared515’). 911 
 912 
Images were presented using a 3-s ON / 1-s OFF trial structure (Figure 1A). In informal piloting, we found 913 
that this pacing made the recognition task feasible and not overly taxing. In addition, we reasoned that the 914 
relatively long stimulus duration would increase neural activity and that the rapidity of the design would 915 
allow more trials to be collected and thereby increase overall experimental power. Finally, we speculated 916 
that the 3/1 trial structure would yield a pleasant experience for participants, at least compared to slow 917 
event-related designs where most experimental time is spent viewing a blank screen. 918 
 919 
Image preparation 920 
 921 
The NSD stimuli are prepared as a single brick of RGB images with dimensionality 425 pixels ´ 425 pixels 922 
´ 3 RGB channels ´ 73,000 images and unsigned 8-bit integer format. 923 
 924 
Images were taken from Microsoft’s Common Objects in Context (COCO) image database14. COCO 925 
images are photographs harvested from online repositories; each image is supplemented by a rich set of 926 
annotations (e.g., boundary polygons around objects, natural language captions, body-pose estimates). 927 
Out of the 90 original COCO categories, there are a total of 80 COCO categories that exist in the 73,000 928 
NSD images. We used COCO images in the 2017 train/val split14, and restricted selection to the subset of 929 
images for which pixel-level annotations of “stuff”64 (e.g., sky, land, wall, road) in addition to “things” (e.g., 930 
car, skateboard, hat) were available. 931 
 932 
We selected only images whose smaller dimension (height or width) was at least 425 pixels. Where 933 
necessary, we squared image dimensions by cropping out pixels along the largest dimension. For 934 
example, if the original image was 425 ´ 585, we cropped away 160 pixels from the larger dimension, 935 
resulting in an image that is 425 ´ 425. The median number of pixels cropped per image was 160. After 936 
cropping, images were downsampled, if needed, to 425 ´ 425. 937 
 938 
Cropping an image can change the way the viewer interprets it. We refer to this effect of cropping as 939 
“semantic loss”. In order to be able to take full advantage of the rich annotations available for the COCO 940 
images, we attempted to minimize semantic loss when cropping images. For landscape-oriented images, 941 
we selected between a center, left, or right crop. For portrait-oriented images, we selected between a 942 
center, top, or bottom crop (finer grids of cropping options had little effect on results). Selection of crops 943 
were carefully performed based on quantitative analysis and visual inspection (details provided in the 944 
NSD Data Manual). 945 
 946 
In addition to screening to minimize semantic loss, we implemented a screening procedure to remove 947 
duplicate images. Some of the COCO images are extremely similar to each other, differing only by a post-948 
processing operation (i.e., grayscaling or sharpening) or by a few frames in a motion-capture sequence. 949 
To remove these near-duplicates, we downsampled all images to 40 ´ 40 and then computed the 950 
correlation of grayscale pixel intensities between all image pairs. We manually inspected the image pairs 951 
with the 500 highest correlation values. Of these, 38 image pairs were observed to be near-duplicates. 952 
We randomly selected another image from the COCO dataset to replace one image in each near-953 
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duplicate pair. Finally, we screened captions for all images for indications of violent or salacious content. 954 
No images were deemed too offensive to include in the experiment.  955 
 956 
The distribution of “thing” categories across the final images selected for NSD was nearly identical to 957 
distribution in the full COCO dataset. As a result, the “person” category was over-represented; however, 958 
with a few exceptions, all 80 COCO object categories are displayed in at least 100 images to each 959 
subject. Note that images tend to depict more than one category, so that a given object category 960 
frequently appeared in the same image with other categories. For each subject’s images, at least 90% of 961 
the images contain 2 or more of the 80 COCO categories. 962 
 963 
Distribution of image presentations 964 
 965 
We determined the ordering of the 10,000 images ´ 3 trials = 30,000 trials in advance and kept the 966 
ordering fixed across subjects. The idea is that these 10,000 images are actually treated as slots into 967 
which different NSD images are inserted. We designated the first 1,000 slots as corresponding to the 968 
special shared1000 images; the remaining 9,000 slots were filled with unique images for each subject. 969 
Note that because the trial ordering and repetition structure are identical across subjects, the difficulty of 970 
the recognition task is comparable across subjects (up to the fact that some images might be more 971 
difficult to remember than others). 972 
 973 
We controlled the distribution of image presentations in order to prevent the recognition task from 974 
becoming too difficult (and risking loss of subject morale). In the procedure, we conceptualized the task of 975 
determining the trial ordering as equivalent to placing image presentations on a circle that would 976 
eventually be cut and unraveled. The rationale for this circular design is to minimize the extent to which 977 
certain points in the experiment differ from others; of course, since the circle eventually becomes a line, 978 
there is some imperfection (see discussion below regarding “burn-in” and “dead” time). To determine 979 
presentation times, we created a circular probability distribution by mixing a von Mises distribution and a 980 
uniform distribution (Extended Data Figure 1A). Using random draws from the resulting distribution 981 
(positioning the distribution at a random location on the circle for each image), we determined 3 982 
presentation times for each of the 10,000 images. After completing the placement of all 30,000 trials, we 983 
then cut the circle, unraveled it into a linear sequence of image presentations, and divided this sequence 984 
into 40 consecutive segments corresponding to the 40 NSD scan sessions (750 trials per session). 985 
 986 
To determine presentation times, we created a circular probability distribution by mixing a von Mises 987 
distribution and a uniform distribution (Extended Data Figure 1A). For each image, we positioned the 988 
peak of the von Mises distribution at a random position on the circle (i.e., we randomly sampled the mean 989 
parameter from –180 to 180 degrees) and then randomly sampled presentation times for each of the 990 
three image repetitions from the mixture distribution. We chose specific parameters for the probability 991 
distribution: we used a von Mises distribution with concentration parameter of 36 and a mixing ratio of 992 
60% and 40% for the von Mises and uniform distributions, respectively. This choice of parameters yields 993 
appealing properties. First, the distribution is relatively narrow (see Extended Data Figure 1A) and 994 
therefore ensures that there will be many trials involving an image that has been presented in the recent 995 
past (thus, making the trials easy), while still allowing the probing of more distant memory events. 996 
Second, there is minimal “burn-in” time at the beginning of the experiment: even in the first scan session, 997 
there is still a substantial number of trials involving old images (see Extended Data Figure 1B, blue 998 
line). Third, there is minimal “dead” time at the end of the experiment: even in the last scan session, there 999 
is still a substantial number of trials involving new images (see Extended Data Figure 1B, blue line). 1000 
 1001 
To provide a sense of the overall experimental design, we computed basic statistics on each NSD scan 1002 
session. For a typical session, the total number of distinct images shown once, twice, and all three times 1003 
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within that session is 437, 106, and 34, respectively (these numbers reflect the mean across scan 1004 
sessions, rounding to the nearest integer). 1005 
 1006 
Trial and run design 1007 
 1008 
Each trial lasted 4 s, and consisted of the presentation of an image for 3 s, followed by a 1-s gap. A total 1009 
of 75 trials were conducted in a run; thus, each run lasted 300 s. The first 3 trials (12 s) and last 4 trials 1010 
(16 s) were blank trials. The remaining 68 trials were divided into 63 stimulus trials and 5 blank trials. The 1011 
blank trials were randomly positioned in each run such that the minimum and maximum continuous 1012 
number of stimulus trials was 9 trials (36 s) and 14 trials (56 s), respectively (see Figure 1B). For even-1013 
numbered runs, the 63rd stimulus trial was designated to be a blank trial. A total of 12 NSD runs were 1014 
collected in one NSD session, yielding a total of (63 + 62) ´ 6 = 750 stimulus trials. Moreover, this design 1015 
was repeated for all 40 NSD sessions: 750 stimulus trials ´ 40 sessions = 30,000 stimulus trials. The 1016 
temporal ordering of stimulus and blank trials was generated once and kept fixed across subjects. 1017 
 1018 
Note that the experimental design involves minimal trial jittering: for the most part, the time interval 1019 
separating consecutive stimulus images is fixed at 1 s, though occasionally, due to blank trials, the time 1020 
interval is 5 s. This design was intended to maximize statistical power, and differs from conventional fMRI 1021 
practice where intervals are often chosen randomly from a fixed range.  1022 
 1023 
Stimulus presentation and task 1024 
 1025 
Since the BOLDscreen is calibrated to behave as a linear display device, we used a squaring luminance 1026 
response when presenting the NSD experiment in order to simulate the typical viewing of digital images. 1027 
At time of presentation, the prepared NSD images were resized using linear interpolation from their native 1028 
resolution of 425 pixels ´ 425 pixels to 714 pixels ´ 714 pixels in order to occupy 8.4° ´ 8.4° on the 1029 
display. Throughout each run (including blank trials), a small semi-transparent red fixation dot with a black 1030 
border (0.2° ´ 0.2°; 50% opacity) was present at the center of the stimuli (Figure 1A). Stimuli were shown 1031 
against a gray background with RGB value (127,127,127). 1032 
 1033 
Subjects were instructed to fixate the central dot and to press button 1 using the index finger of their right 1034 
hand if the presented image was new, i.e. the image had never been presented before, or button 2 using 1035 
the middle finger of their right hand if the presented image was old, i.e. the image is identical to one that 1036 
had been presented before, either in the current scan session or any previous scan session. Subjects 1037 
were additionally instructed to continue to fixate and wait for the next image in the event of blank trials. 1038 
 1039 
Before the start of the NSD experiment, we showed the subjects a version of the experiment involving 1040 
cartoon images in order for them to become familiarized with the feel and timing of the task. During the 1041 
NSD experiment, minimal feedback was provided to the subjects regarding their performance on the 1042 
recognition task. Participants were blind to the precise details of the NSD experiment (e.g., total number 1043 
of images, total number of presentations per image). Participants were informed only about their 1044 
response rate (fraction of trials on which they successfully made a response) and a vague “performance 1045 
metric” which, unbeknownst to them, quantified their percent correct for easy trials (trials that involved the 1046 
presentation of an image that had occurred earlier in the same scan session). We revealed the nature of 1047 
the design in a debriefing session after the completion of the NSD experiment (details below). 1048 
 1049 
Details on experiment timing 1050 
 1051 
Stimulus presentation was locked to the refresh rate of the BOLDscreen monitor. Empirical 1052 
measurements confirmed that the monitor refresh rate was nearly exactly 120 Hz: duration of runs were 1053 
highly reliable, ranging from 299.95–299.98 s. To compensate for the slight offset from 300 s, the fMRI 1054 
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data were pre-processed to achieve a sampling rate of 0.999878 s (high-resolution preparation) or 1055 
0.999878 s ´ (4/3) = 1.333171 s (standard-resolution preparation). For brevity, we refer to these numbers 1056 
as 1.000 s and 1.333 s. Experimental runs were started by a trigger issued by the MR scanner. Due to 1057 
input polling and monitor refresh, there was slight variability in the delay between trigger detection and the 1058 
presentation of the first stimulus frame, ranging from 3–22 ms. We did not attempt to compensate for this 1059 
delay. 1060 
 1061 
Acquisition 1062 
 1063 
Due to constraints on subject availability (including unplanned out-of-town absences in the summer of 1064 
2019) and due to constraints on scanner availability (the 7T scanner was decommissioned in November 1065 
2019), we did not complete the full NSD experiment for every participant. Fortunately, we were able to 1066 
collect a sizable amount of data: 40, 40, 32, 30, 40, 32, 40, and 30 NSD sessions for subj01–subj08, 1067 
respectively. In these collected data, each subject viewed 9,209–10,000 distinct images and participated 1068 
in 22,500–30,000 trials. Aggregated across subjects, the total number of distinct images shown was 1069 
70,566, and the total number of trials was 213,000. 1070 
 1071 
Debriefing 1072 
 1073 
After completion of the final memory test (details below), participants filled out a post-NSD questionnaire. 1074 
This questionnaire probed topics such as strategies used for performing the NSD task and estimates for 1075 
the number of images viewed and the number of image repetitions. After filling out this questionnaire, the 1076 
design of the NSD experiment was then revealed to the participants. 1077 
 1078 
Other experiments 1079 
 1080 
Population receptive field (pRF) experiment 1081 
 1082 
We adapted the experiment used in the Human Connectome Project (HCP) 7T Retinotopy Dataset30. 1083 
Stimuli consisted of slowly moving apertures filled with a dynamic colorful texture (see Figure 2A). 1084 
Apertures and textures were updated at a rate of 15 Hz. Two run types were used. The first, termed 1085 
‘multibar’, involves bars sweeping in multiple directions (same as RETBAR in the HCP 7T Retinotopy 1086 
Dataset). The second, termed ‘wedgering’, involves a combination of rotating wedges and expanding and 1087 
contracting rings. Both run types included blank periods. 1088 
 1089 
For consistency with the NSD experiment, stimuli were resized to fill a circular region with diameter 8.4°. 1090 
Each run lasted 300 s (exact empirical timings were highly accurate and ranged between 299.95–300.00 1091 
s). Throughout stimulus presentation, a small semi-transparent dot (0.2° ´ 0.2°) was present at the center 1092 
of the stimuli. The color of the central dot switched randomly to one of three colors (black, white, or red) 1093 
every 1–5 s. Subjects were instructed to maintain fixation on the dot and to press a button whenever the 1094 
color of the dot changed. To further aid fixation, a semi-transparent fixation grid was superimposed on the 1095 
stimuli and was present throughout the experiment65. A total of 6 runs (3 multibar, 3 wedgering) were 1096 
collected in the first 7T fMRI session (prffloc). 1097 
 1098 
Functional localizer (fLoc) experiment 1099 
 1100 
This experiment was developed by the Grill-Spector lab31 (stimuli and presentation code available at 1101 
http://vpnl.stanford.edu/fLoc/). The experiment consisted of the presentation of grayscale images 1102 
depicting different stimulus categories (see Figure 2A). There were 10 categories, grouped into 5 1103 
stimulus domains: characters (word, number), bodies (body, limb), faces (adult, child), places (corridor, 1104 
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house), and objects (car, instrument). Stimuli were presented on a scrambled background (different 1105 
backgrounds for different stimuli). Stimuli were presented in 4-s trials. In a trial, 8 images from a given 1106 
category were sequentially presented (image duration 0.5 s). Each run included 6 presentations of each 1107 
of the 10 categories as well as blank trials (also of 4-s duration). 1108 
 1109 
For consistency with the NSD experiment, stimuli were resized to fill a square region filling 8.4° ´ 8.4° of 1110 
visual extent. Each run lasted 300 s (exact empirical timings were highly accurate and ranged between 1111 
300.000–300.002 s). Throughout stimulus presentation, a small red fixation dot was present at the center 1112 
of the stimuli. Subjects were instructed to maintain fixation on the dot and to press a button whenever 1113 
they noticed an image in which only the background was present (“oddball” task). A total of 6 runs were 1114 
collected in the first 7T fMRI session (prffloc). 1115 
 1116 
Resting-state experiment 1117 
 1118 
Stimuli consisted of a white fixation cross (0.5° ´ 0.5°) on a gray background (see Figure 2A). Each 1119 
resting-state run lasted 300 s. In the second resting-state run held within a given scan session, the 1120 
fixation cross turned red after 12 s had elapsed and remained red for 4 s before returning to white. 1121 
 1122 
Resting-state data were acquired in several NSD core scan sessions: nsd21–nsd38 for subj01 and 1123 
subj05, and nsd21–nsd30 for all other subjects. Thus, a total of 100 or 180 minutes of resting-state data 1124 
were acquired for each subject. In each session, one resting-state run was acquired at the beginning of 1125 
the session (prior to the NSD runs) and another resting-state run was acquired at the end of the session 1126 
(after the NSD runs). 1127 
 1128 
In the first resting-state run, subjects were instructed to stay awake and fixate the cross but otherwise 1129 
rest. In the second resting-state run, subjects were additionally instructed to inhale deeply when the 1130 
fixation cross turned red. This instructed breath was designed to aid analysis of the physiological data 1131 
collected concomitantly with the resting-state data. Prior to each resting-state run, subjects were asked to 1132 
report their current sleepiness level using the Stanford Sleepiness Scale66 (1–7 where 1 is most active 1133 
and 7 is most sleepy). After each resting-state run, subjects were asked to report their sleepiness level 1134 
during the run that had just completed. 1135 
 1136 
After the last scan session involving resting-state data, participants filled out a post-resting-state 1137 
questionnaire. This questionnaire queried what the participants were doing during the resting-state runs 1138 
and whether they thought about the images from the NSD experiment. 1139 
 1140 
Synthetic stimuli experiment (nsdsynthetic) 1141 
 1142 
After completion of the NSD experiment, we conducted an additional 7T fMRI scan session in which 1143 
responses were measured to a variety of carefully controlled synthetic (non-naturalistic) stimuli while the 1144 
subject performed either a fixation task or a one-back task. These data will be described and released in 1145 
a forthcoming manuscript. 1146 
 1147 
Visual imagery experiment (nsdimagery) 1148 
 1149 
After completion of the nsdsynthetic experiment, we conducted an additional 7T fMRI scan session in 1150 
which responses were measured while participants engaged in visual imagery and other cognitive tasks. 1151 
These data will be described and released in a forthcoming manuscript. 1152 
 1153 
Additional behavioral measures (nsdpostbehavior, nsdmemory, nsdmeadows) 1154 
 1155 
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A number of behavioral assessments were conducted after completion of the NSD experiment. Several of 1156 
these were relatively brief, and included the following (nsdpostbehavior): open-ended questions regarding 1157 
language ability; the Vividness of Visual Imagery Questionnaire67; the Test of Word Reading Efficiency68, 1158 
including both Sight Word Efficiency and Phonemic Decoding Efficiency; the Cambridge Memory Test for 1159 
Faces69; ultra-fast measurement of contrast sensitivity70; and an assessment of chromatic sensitivity 1160 
(participants adjusted intensities of red, green, and blue channels on the BOLDscreen display until 1161 
minimal luminance flicker was perceived). 1162 
 1163 
We also conducted a final memory test in which we collected various memory-related measures 1164 
regarding the images shown to the subjects during the NSD experiment (nsdmemory). These data will be 1165 
described and released in a forthcoming manuscript. 1166 
 1167 
Finally, using the web-based Meadows platform (http://meadows-research.com), we conducted an 1168 
assessment of how the NSD subjects perceive and interpret the NSD images (nsdmeadows). First, we 1169 
selected a small set of images that maximally span semantic space. This was done by isolating the 1170 
shared515 images; computing shifted inverse frequency sentence embeddings for the sentence captions 1171 
provided by the COCO dataset71; and using a greedy approach to determine the subset of 100 images 1172 
that maximize the average distance between each image’s embedding and its closest neighbor. We then 1173 
asked participants to perform a Multiple Arrangements Task72 in which they arrange using a drag-and-1174 
drop interface the 100 images within a white circular arena according to the similarity of their content. 1175 
Using an adaptive procedure, subsequent arrangements were conducted using subsets of the images in 1176 
order to maximize information gain. This was done until 45 minutes had elapsed. Using a similar interface 1177 
on Meadows, participants then provided valence and arousal ratings for the 100 images as well as 3 1178 
additional images pulled from the shared515 images. Ratings were performed separately for valence and 1179 
arousal, and were accomplished by freely arranging using a drag-and-drop interface the images 1180 
(delivered in small batches) along a one-dimensional axis ranging from low to high. This assessment took 1181 
about 15 minutes. 1182 
 1183 
Overview of data analysis 1184 
 1185 
We designed custom analysis strategies to maximize the quality of derived measures from the NSD data. 1186 
A number of methods are based on recent work32,73 where further details can be found. Data analysis and 1187 
visualization were performed using custom code in MATLAB and Python as well as tools from various 1188 
packages such as FreeSurfer, SPM, FSL, ANTs74, and ITK-SNAP75. An archive of code used is provided 1189 
online (https://github.com/cvnlab/nsddatapaper/), and specific code files are referenced in the text below. 1190 
 1191 
A comprehensive schematic outlining the data analysis performed in this paper is provided in Extended 1192 
Data Figure 3. The analysis of the NSD data can be divided into three components: (i) pre-processing of 1193 
the anatomical, diffusion, and functional data, (ii) time-series analysis of the fMRI data to estimate trial-1194 
wise betas, and (iii) further analyses of the trial-wise betas to answer specific scientific questions. The first 1195 
two components produce the so-called ‘prepared data’ that are generally useful to the community, 1196 
whereas the third component refers to analyses performed for the purposes of this paper (estimation of 1197 
pRFs from the NSD data, univariate memory analysis, representational similarity analysis, brain-optimized 1198 
neural network training). Data collection and analysis were not performed blind to the conditions of the 1199 
experiments. No data were excluded from analyses, with the exception of a few T1 volumes (2 of 52 1200 
volumes = 4%) and certain portions of the eyetracking data that were corrupted by noise (11 of 160 1201 
eyetracking runs = 7%). 1202 
 1203 
The pre-processing approach that we designed for the NSD dataset prioritizes accuracy and preservation 1204 
of information (e.g. avoiding spatial smoothing). We avoid “baking in” unnecessary assumptions (e.g. 1205 
aggressively removing signal fluctuations without careful assessment of validity) and we avoid assuming 1206 
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the accuracy of automated methods; care is taken to manually inspect each pre-processing step to 1207 
ensure satisfactory results. While we believe our pre-processing is general and likely suitable for most 1208 
downstream uses of the data, the raw data are also available for those who wish to explore other pre-1209 
processing approaches such as fmriprep76. We note several aspects of the NSD dataset that may render 1210 
the dataset challenging from a pre-processing standpoint: the relatively high spatial resolution of the fMRI 1211 
data (1.8 mm) places higher demands on spatial accuracy, the ultra-high field strength (7T) used for the 1212 
fMRI data yields higher levels of EPI spatial distortion compared to lower field strengths, and the 1213 
emphasis on many repeated scans of individuals heightens the importance of achieving consistent 1214 
imaging results across scan sessions. 1215 
 1216 
Pre-processing of MRI data 1217 
 1218 
Details of the pre-processing of anatomical, functional, and diffusion data are provided in Supplementary 1219 
Notes 4–5. Functional data were pre-processed using one temporal resampling to correct for slice time 1220 
differences and one spatial resampling to correct for head motion within and across scan sessions, EPI 1221 
distortion, and gradient nonlinearities. Two versions of the functional data were prepared: a 1.8-mm 1222 
standard-resolution preparation (temporal resolution 1.333 s) and an upsampled 1.0-mm high-resolution 1223 
preparation (temporal resolution 1.000 s). Analyses of the pRF and fLoc localizer experiments were used 1224 
to define retinotopic and category-selective regions of interest (ROIs), respectively. Other ROIs were also 1225 
defined, including an ‘nsdgeneral’ ROI indicating occipital regions generally responsive in the NSD 1226 
experiment and a ‘corticalsulc’ ROI collection indicating major cortical sulci and gyri. Annotations for 1227 
several of the corticalsulc ROIs are shown in Figure 3F and Figure 4B. Abbreviations: CGS = cingulate 1228 
sulcus, PrCS = precentral sulcus, CS = central sulcus, PoCS = postcentral sulcus, SFRS = superior 1229 
frontal sulcus, IFRS = inferior frontal sulcus, LS = lateral sulcus, Calc = calcarine sulcus, OTS = 1230 
occipitotemporal sulcus, CoS = collateral sulcus, STS = superior temporal sulcus, IPS = intraparietal 1231 
sulcus. 1232 
 1233 
Data quality metrics 1234 
 1235 
Several data quality metrics were calculated (export_runmetrics.m) and summarized in Figures 1D and 1236 
2D. Temporal signal-to-noise ratio (tSNR) was computed from raw fMRI volumes (no pre-processing) by 1237 
first detrending the time-series data from each voxel (quadratic polynomial fit) and then dividing the mean 1238 
signal intensity by the standard deviation of signal intensity values (autoqc_fmri.m). We calculated the 1239 
median tSNR across voxels within a simple brain mask (mean volume thresholded at 1/10th of the 99th 1240 
percentile of values) and then computed the median across runs. Head motion was quantified by 1241 
calculating framewise displacement (FD)77 based on motion parameter estimates (1.8-mm preparation). 1242 
We calculated the mean FD across volumes in a run and then computed the median across runs. BOLD 1243 
response was quantified by calculating the percentage of variance explained by a simple ON-OFF GLM 1244 
model (1.8-mm preparation). We calculated the median variance explained across voxels within the 1245 
nsdgeneral ROI and then computed the median across runs. (Further details on the ON-OFF GLM can be 1246 
found in the ‘GLMsingle algorithm’ section.) Response rate was quantified by calculating the percentage 1247 
of trials for which the subject pressed a button and then computing the mean across runs. Behavioral 1248 
performance was quantified by dividing trials into easy trials (trials for which the presented image had 1249 
been previously presented in the same scan session), hard trials (trials for which the presented image 1250 
had been previously presented but in a previous scan session), and novel trials (trials for which the 1251 
presented image had never been previously presented) and then calculating, for each trial type, the 1252 
percentage of trials on which the subject indicated an ‘old’ response. 1253 
 1254 
To identify EPI signal dropout regions (export_signaldropout.m), we divided the T2 volume (resampled to 1255 
match the EPI data) by the mean EPI volume (1-mm preparation). The resulting volume is useful as it 1256 
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indicates which voxels have high signal intensity in the T2 but are corrupted by signal dropout in the EPI. 1257 
We mapped the volume to the cortical surface (cubic interpolation; mean across depth), transformed the 1258 
result to fsaverage, and then used a data-driven threshold to mark atypically high values. Vertices marked 1259 
in at least four of the eight subjects are indicated in Figure 3F. To visualize surface imperfections, we 1260 
took the voxels that were marked in the 0.8-mm anatomical space (during the manual inspection of 1261 
FreeSurfer surface imperfections), smoothed this binary volume with a 3D Gaussian with full-width-half-1262 
max of 2 mm, mapped the result to the cortical surface (cubic interpolation; max across depth), and then 1263 
transformed the result to fsaverage. Vertices exceeding 0.01 in at least one of the eight subjects are 1264 
indicated in Figure 3F. 1265 
 1266 
Rankings from the 7T fMRI screening session 1267 
 1268 
Six quality measures (pRF BOLD, fLoc BOLD, pRF behavior, fLoc behavior, raw motion, detrended 1269 
motion) were computed for each of the 14 subjects who participated in the screening session. BOLD 1270 
quality was quantified as the percentage of voxels for which variance explained by modeling the fMRI 1271 
time-series data (either pRF model fitting or GLM model fitting) exceeded 20%. Behavior quality was 1272 
quantified as described above. Motion was quantified by calculating the median voxel displacement 1273 
relative to the reference volume used for motion correction, computing the median of this quantity across 1274 
volumes, and then computing the mean across runs. This motion quantification was performed using raw 1275 
motion parameter estimates (thereby providing a measure of global head displacement over the course of 1276 
the session) as well as using motion parameter estimates that are linearly detrended within each run 1277 
(thereby providing a measure of within-run head instability). Each of the six measures was linearly scaled 1278 
to span the range 1–5 where 1 corresponds to the worst performance and 5 corresponds to the best 1279 
performance observed across subjects. Finally, the normalized measures were averaged to produce an 1280 
overall ranking for each subject, as depicted in Figure 2C. 1281 
 1282 
Analysis of behavioral data from the NSD experiment 1283 
 1284 
The behavioral data from the NSD experiment were lightly reformatted for the convenience of subsequent 1285 
analyses (analyzebehavior_nsd.m). We first checked whether the subject had accidentally positioned 1286 
their fingers on incorrect buttons on the button box, and compensated for this if necessary. (In a few 1287 
instances, we deliberately instructed subjects to use alternative buttons due to hardware malfunction of 1288 
the button box.) We then recorded, for each stimulus trial, several quantities including time of image 1289 
presentation, whether the image presented was new or old, whether the response was correct or 1290 
incorrect, and the reaction time. Button responses were extracted from a time window extending 250–1291 
4250 ms after image onset. In the case of multiple buttons pressed during a trial, we scored the final 1292 
button pressed, excluding any redundant presses of that button (subjects sometimes repeated button 1293 
presses for good measure). 1294 
 1295 
GLM analysis of the NSD experiment 1296 
 1297 
Overview of approach 1298 
 1299 
We performed a GLM analysis of the pre-processed time-series data from the NSD experiment. To 1300 
maximize flexibility for subsequent analyses, the GLM approach was designed to provide estimates of 1301 
BOLD response amplitudes (‘betas’) for single trials. Due to low signal-to-noise ratio, single-trial 1302 
estimation in fMRI is challenging. We therefore developed several analysis components in order to 1303 
optimize the quality of single-trial betas. These components are packaged into a tool called GLMsingle, 1304 
and is the subject of a forthcoming manuscript where additional details and discussion can be found. 1305 
 1306 
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The first analysis component of GLMsingle is the use of a library of hemodynamic response functions 1307 
(HRFs) whereby the best-fitting HRF from the library is chosen for each voxel. This simple approach for 1308 
compensating for differences in hemodynamic timecourses across voxels78 has several appealing 1309 
features: it is efficient and can be executed with little computational cost (and hence can accommodate 1310 
the massive scale of NSD); and it invariably provides well-regularized HRF estimates. The second 1311 
analysis component is an adaptation of GLMdenoise to a single-trial GLM framework. GLMdenoise35 is a 1312 
technique in which data-derived nuisance regressors are identified and used to remove noise from—and 1313 
therefore improve the accuracy of—beta estimates. The third component is an application of ridge 1314 
regression79 as a method for dampening the noise inflation caused by correlated single-trial GLM 1315 
predictors. To determine the optimal level of regularization for each voxel, we make use of a recently 1316 
developed efficient re-parameterization of ridge regression called ‘fractional ridge regression’36. 1317 
 1318 
Derivation of the library of HRFs 1319 
 1320 
To generate a library of HRFs that accurately capture empirically occurring timecourse variation, we 1321 
performed an initial analysis of data from the first NSD core session (nsd01). This library was fixed and 1322 
used for the analysis of all subsequent NSD sessions. The first step was to create a comprehensive 1323 
summary of observed timecourses (hrf_derivecanonicalpcs.m). The time-series data from each subject’s 1324 
nsd01 session was fit using a finite impulse response model (0–30 s) where all of the stimulus trials are 1325 
treated as instances of a single experimental condition (this simplification is necessary to make estimation 1326 
feasible). We identified voxels for which model variance explained (R2) was greater than 10%, and from 1327 
these voxels randomly drew 20,000 voxels (with replacement). Pooling across subjects, timecourse 1328 
estimates from the resulting 160,000 voxels were subjected to singular value decomposition to determine 1329 
the top 3 principal components (shown in Figure 3B, inset). To fine-tune timecourse estimates, we re-fit 1330 
the time-series data from the nsd01 session using these 3 principal components as the basis (as opposed 1331 
to the finite impulse response basis). Finally, adopting the visualization approach of the Temporal 1332 
Decomposition Method73, we projected voxel timecourse estimates onto the unit sphere (using the same 1333 
voxel selection criterion of R2 > 10%), and constructed a 2D histogram for each subject (shown in Figure 1334 
3A). 1335 
 1336 
The second step was to define a set of timecourses that span the observed timecourse variation 1337 
(hrf_constructmanifold.m). To do this, we converted the 2D histograms to units of relative frequency and 1338 
then averaged the histograms across subjects. Inspecting the group-average histogram (shown in Figure 1339 
3B), we manually clicked a sequence of points on the unit sphere that follow the data density as closely 1340 
as possible. We then parameterized the path traced by these points (a simple 1D manifold) by positioning 1341 
regularly spaced points where successive points are separated by six angular degrees (Figure 3B, cyan 1342 
dots). The timecourses corresponding to the resulting set of 20 points were cubic interpolated to a 1343 
sampling rate of 0.1 s and normalized to peak at 1 (Figure 3C). Finally, we fit each timecourse using a 1344 
double-gamma function as implemented in SPM’s spm_hrf.m (hrf_fitspmhrftomanifold.m). This yielded a 1345 
library of 20 canonical HRFs that may be useful for application to other experimental datasets 1346 
(getcanonicalhrflibrary.m). We note that variation in timecourse shape is likely due to the influence of 1347 
macrovasculature on BOLD temporal dynamics73. 1348 
 1349 
Cross-validation framework for single-trial GLM 1350 
 1351 
The GLMdenoise and ridge regression analysis components of GLMsingle both require tuning of 1352 
hyperparameters. To determine the optimal setting of hyperparameters, we use a cross-validation 1353 
approach in which out-of-sample predictions are made for single-trial beta estimates, as opposed to time-1354 
series data. This simplifies and reduces the computational requirements of the cross-validation 1355 
procedure. Note that because of cross-validation, although GLMsingle produces estimates of responses 1356 
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to single trials, it does require the existence of and information regarding repeated trials, i.e., trials for 1357 
which the stimulus is the same. 1358 
 1359 
The first step of the cross-validation procedure is to analyze all of the available data using no 1360 
regularization. In the case of GLMdenoise, this amounts to the inclusion of zero nuisance regressors; in 1361 
the case of ridge regression, this amounts to the use of a shrinkage fraction of one, indicating ordinary 1362 
least-squares regression. In both cases, the analysis produces a full set of unregularized single-trial betas 1363 
(e.g., in one NSD session, there are 750 single-trial betas distributed across 12 runs). The second step of 1364 
the procedure is to perform a grid search over values of the hyperparameter (e.g., number of nuisance 1365 
regressors; shrinkage fraction). For each value, we assess how well the resulting beta estimates 1366 
generalize to left-out runs. For example, in leave-one-run-out cross-validation, one run is held out as the 1367 
validation run, stimuli that occur in both the training runs and the validation run are identified, and squared 1368 
errors between the regularized beta estimates from the training runs and the unregularized beta 1369 
estimates from the validation run are calculated. This procedure is iterated with each run serving as the 1370 
validation run, and errors are summed across iterations. 1371 
 1372 
GLMsingle algorithm 1373 
 1374 
Having described the essential aspects of the estimation framework above, we now turn to the steps in 1375 
the GLMsingle algorithm. GLMsingle involves fitting several different GLM variants. Each variant includes 1376 
polynomial regressors to characterize the baseline signal level: for each run, we include polynomials of 1377 
degrees 0 through round(L/2) where L is the duration in minutes of the run. 1378 

1. Fit a simple ON-OFF GLM. In this model, stimulus trials are treated as instances of a single 1379 
experimental condition, and a canonical HRF is used (getcanonicalhrf.m). Thus, there is a single 1380 
“ON-OFF” predictor that attempts to capture signals driven by the experiment. The utility of this 1381 
simple model is to provide variance explained (R2) values that help indicate which voxels carry 1382 
experiment-driven signals. 1383 

2. Fit a baseline single-trial GLM. In this model, each stimulus trial is modeled separately using the 1384 
canonical HRF. This model provides a useful baseline for comparison. 1385 

3. Identify HRF for each voxel. We fit the data multiple times with a single-trial GLM, each time using 1386 
a different HRF from the library of HRFs. For each voxel, we identify which HRF provides the best 1387 
fit to the data (highest variance explained), and inherit the single-trial betas associated with that 1388 
HRF. Note that the final model for each voxel involves a single chosen HRF from the library (not a 1389 
weighted sum of HRFs). 1390 

4. Use GLMdenoise to determine nuisance regressors to include in the model. We define a pool of 1391 
noise voxels (brain voxels that have low ON-OFF R2) and then perform principal components 1392 
analysis on the time-series data associated with these voxels. The top principal components are 1393 
added one at a time to the GLM until cross-validation performance is maximized on-average 1394 
across voxels. 1395 

5. Use fractional ridge regression to regularize single-trial betas. With the nuisance regressors 1396 
determined, we use fractional ridge regression (fracridge36) to estimate the single-trial betas, 1397 
systematically evaluating different shrinkage fractions. For each voxel, in the context of a GLM 1398 
that incorporates the specific HRF chosen for that voxel, cross-validation is used to select an 1399 
optimal shrinkage fraction for that voxel. To mitigate bias on the overall scale of betas, we apply a 1400 
post-hoc scaling and offset on betas obtained for a given voxel in order to match, in a least-1401 
squares sense, the unregularized betas obtained for that voxel. 1402 

 1403 
Application of GLMsingle to the NSD data 1404 
 1405 
We used GLMsingle to analyze the time-series data independently for each NSD scan session 1406 
(glm_nsd.m). Major algorithmic parameters included the following: we evaluated up to 10 nuisance 1407 
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regressors; we evaluated shrinkage fractions from 0.05 to 0.90 in increments of 0.05 and from 0.91 to 1 in 1408 
increments of 0.01 (representing a finer grain for voxels with the best signal-to-noise ratio); we performed 1409 
6-fold cross-validation (consecutive pairs of runs) for Steps 4 and 5; and we used an ON-OFF R2 1410 
threshold of 5% in Step 4.  1411 
 1412 
Three different versions of the single-trial betas were computed and saved. The first beta version (b1, 1413 
‘betas_assumehrf’) is the result of Step 2, and reflects the use of a canonical HRF. The second beta 1414 
version (b2, ‘betas_fithrf’) is the result of Step 3, and reflects the result of voxel-wise HRF estimation. The 1415 
third beta version (b3, ‘betas_fithrf_GLMdenoise_RR’) is the result of Step 5, and reflects the additional 1416 
GLMdenoise and ridge regression procedures. Betas were converted to units of percent BOLD signal 1417 
change by dividing amplitudes by the mean signal intensity observed at each voxel and multiplying by 1418 
100. While we provide betas in units of percent signal change, we suggest that users may wish to z-score 1419 
the responses of each voxel within each scan session in order to eliminate potential non-stationarities and 1420 
to equalize units across voxels. 1421 
 1422 
For user convenience, we created preparations of the single-trial betas in additional spaces other than the 1423 
native 1.8-mm and 1.0-mm functional spaces. For the ‘nativesurface’ preparation, we performed cubic 1424 
interpolation of the 1.0-mm betas onto each of the 3 cortical surface depths and averaged across depths 1425 
(analysis_transformfsaverage.m). The result was then mapped using nearest-neighbor interpolation to 1426 
fsaverage space to create the ‘fsaverage’ preparation. For the ‘MNI’ preparation, we mapped the 1.0-mm 1427 
betas to MNI space using cubic interpolation (analysis_transformMNI.m). 1428 
 1429 
GLM analysis of the resting-state experiment 1430 
 1431 
As an optional resource, we fit the time-series data from the resting-state experiment using methods that 1432 
parallel those used for the NSD experiment (glm_nsdresting.m). For each scan session involving resting-1433 
state, we took the two resting-state runs (first and last run acquired) and analyzed the data using the 1434 
design matrix of the neighboring NSD runs and the same voxel-wise HRFs determined from analyzing the 1435 
NSD runs in that scan session (this is analogous to beta version b2). Although there is no reason to think 1436 
that spontaneous resting-state activity conforms to the 4-s trial structure of the NSD experiment, these 1437 
resting-state betas may be useful as a direct comparison for the NSD betas. 1438 
 1439 
Noise ceiling estimation 1440 
 1441 
To obtain a measure of data quality, noise ceilings were estimated for the NSD betas 1442 
(export_noiseceiling.m). The noise ceiling for a given voxel is defined as the maximum percentage of 1443 
variance in the voxel’s responses that can in theory be explained, given the presence of measurement 1444 
noise. Our method for estimating the noise ceiling follows the general framework laid out in previous 1445 
studies80,81. Several assumptions are made: (i) the signal contained in the voxel’s response is determined 1446 
solely by the presented image, (ii) the variability of the signal across different images is Gaussian-1447 
distributed, (iii) the noise is Gaussian-distributed with zero mean, and (iv) the response to an image is 1448 
equal to the signal plus noise. Given these assumptions, any observed response is a sample from a sum 1449 
of Gaussian distributions: 1450 

𝑅𝐸𝑆𝑃 ∼ 𝒩'𝜇!"#$%& , 𝜎!"#$%&+ +𝒩(0, 𝜎$'"!() 1451 
where RESP indicates the NSD beta observed on a given trial, µsignal is the mean signal across different 1452 
images, ssignal is the standard deviation of the signal across different images, and snoise is the standard 1453 
deviation of the noise (for illustration of these concepts, see Extended Data Figure 8C). Note that the 1454 
first Gaussian distribution characterizes true signal variability, whereas the second Gaussian 1455 
characterizes variability due to noise. Also, note that this framework treats response variability unrelated 1456 
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to the stimulus as “noise”, but such variability may in fact reflect “signal” from the perspective of functional 1457 
connectivity82. 1458 
 1459 
To compute the noise ceiling, we first take the trial-wise NSD betas for each voxel and z-score these 1460 
betas within each scan session. This simple normalization compensates for nonstationarities that may 1461 
exist across sessions. We then calculate the variance of the betas across the three presentations of each 1462 
image (using the unbiased estimator that normalizes by n–1 where n is the sample size), average this 1463 
variance across images, and then compute the square-root of the result. This produces an estimate of the 1464 
noise standard deviation: 1465 

𝜎0$'"!( = 2mean(𝛽)
*) 1466 

where 𝛽!
" indicates the variance across the betas obtained for a given image. Next, given that the 1467 

variance of the z-scored betas is 1, we estimate the signal standard deviation as follows: 1468 

𝜎0!"#$%& = 281 − 𝜎0$'"!(
*8
+
 1469 

where |	|+ indicates positive half-wave rectification. Finally, we simplify by calculating a single scalar 1470 
quantity: 1471 

𝑛𝑐𝑠𝑛𝑟 = 	
𝜎0!"#$%&
𝜎0$'"!(

 1472 

where ncsnr indicates the noise ceiling signal-to-noise ratio. 1473 
 1474 
Given the framework described above, the noise ceiling can be calculated as the amount of variance 1475 
contributed by the signal expressed as a percentage of the total amount of variance in the data: 1476 

𝑁𝐶 = 100 ×
𝜎!"#$%&*

𝜎!"#$%&* + 𝜎$'"!(*
 1477 

where NC indicates the noise ceiling. We would like to be able to calculate the noise ceiling based on the 1478 
single scalar ncsnr. Moreover, since a researcher may wish to average across multiple presentations of 1479 
each image before attempting to explain the NSD betas, we would like a method for flexibly expressing 1480 
the noise ceiling for different levels of trial-averaging. With some algebra, it can be shown that the noise 1481 
ceiling can be expressed as follows:	1482 

𝑁𝐶 = 100 ×
𝑛𝑐𝑠𝑛𝑟*

𝑛𝑐𝑠𝑛𝑟* + 1
𝑛
 1488 

where n indicates the number of trials that are averaged together (see the NSD Data Manual for the 1483 
derivation and additional details). We note that there is a direct relationship between the commonly used 1484 
metric of split-half reliability and the noise ceiling: if a voxel has two sets of responses that reflect the 1485 
same image presentations, then the correlation between the two sets of responses multiplied by 100 is 1486 
equal to the noise ceiling for single-trial responses expressed in percent variance explained. 1487 
 1489 
Using the above methods, we calculated noise ceilings for each of the beta versions and for each of 1490 
various spatial preparations (1.8-mm, 1-mm, fsaverage, nativesurface). For simplicity, noise ceiling 1491 
estimates were calculated using betas associated with images with all three presentations available. To 1492 
assess stability, we also computed split-half noise ceiling estimates. This was achieved by splitting the 1493 
available images into two mutually exclusive groups and computing noise ceiling estimates independently 1494 
for each group. The noise ceiling results shown in Figure 3F–G and Supplementary Figure 6 were 1495 
computed assuming n = 3, reflecting the scenario in which trial-wise betas are averaged across three 1496 
trials for each image. The noise ceiling results shown in Figure 6A–B were computed assuming n = 1 1497 
and are expressed in correlation units (square root of percent variance explained). 1498 
 1499 
A few important notes: Even though NSD consists of only up to three trials for a given image, the estimate 1500 
of response variability for each voxel (i.e. the noise standard deviation) is averaged across a very large 1501 
number of images, thus stabilizing the noise ceiling estimate. Also, note that our noise ceiling metric 1502 
refers to activity levels in individual voxels in individual subjects. It is thus quite different from, for 1503 
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example, noise ceiling metrics computed for group-average representational dissimilarity matrices83. The 1504 
latter are more abstracted away from the data given that they summarize properties observed across a 1505 
collection of voxels, reflect second-order computations on activity levels and not activity levels 1506 
themselves, and probe responses at the group level and not at the individual level. 1507 
 1508 
Calculation of equivalent trials 1509 
 1510 
To provide a common basis for comparing different datasets, we define the number of equivalent trials 1511 
present in a dataset as N ´ ncsnr2 where N indicates the number of trials conducted and ncsnr is the 1512 
noise ceiling signal-to-noise ratio (as defined earlier). The assumptions here are that (i) every trial has 1513 
equal value, irrespective of whether it is used to measure brain responses to an image that has already 1514 
been shown or a new image (e.g., two trials for one image is equivalent to one trial for two distinct 1515 
images), and (ii) increases in signal-to-noise ratio are equivalent to the collection of additional trials. For 1516 
an illustrative example of the second assumption, suppose an experimenter chooses to improve signal-to-1517 
noise ratio by averaging the response to a given image across p repetitions of that image. This effectively 1518 
reduces the noise standard deviation by a factor of √p and ncsnr will thus increase by a factor of √p. 1519 
Alternatively, the experimenter could choose to not average and instead use the p trials as-is. In the 1520 
former case, the number of equivalent trials is 1 ´ (√p ´ ncsnr)2 = p ´ ncsnr2, whereas in the latter case, 1521 
the number of equivalent trials is p ´ ncsnr2. Thus, the two cases correspond to the same number of 1522 
equivalent trials. 1523 
 1524 
We conducted an auxiliary analysis that directly compares NSD against the BOLD5000 dataset22. The 1525 
goal of this analysis was to calculate a summary ncsnr value for each dataset, so that the number of 1526 
equivalent trials can be calculated. For fair comparison, both NSD and BOLD5000 were analyzed using 1527 
the exact same GLM methods described in this paper (beta version b3). We then defined a common brain 1528 
region on which data quality can be compared. This was done by transforming the nsdgeneral ROI to MNI 1529 
space and then mapping the resulting MNI mask to each subject in the two datasets. Finally, we 1530 
computed the median ncsnr observed across voxels in the mask in each subject. 1531 
 1532 
The median ncsnr, averaged across subjects, was 0.260 for NSD (averaged across the first four NSD 1533 
subjects), and 0.187 for BOLD5000 (averaged across the four subjects in BOLD5000). This indicates 1534 
that, despite the longer time duration allocated per trial in BOLD5000 (10 s) compared to NSD (4 s), the 1535 
quality of a single-trial beta in NSD is higher than that in BOLD5000. Specifically, one NSD trial is 1536 
approximately equivalent to (0.260)2/(0.187)2 = 1.93 BOLD5000 trials. This increase in quality is likely 1537 
due, in part, to the screening of subjects and the ultra-high magnetic field strength (7T) used in NSD. 1538 
Note that the ncsnr metric quantifies the SNR per trial and is expected to be unbiased with respect to the 1539 
number of repeated trials used to calculate it. Thus, although the exact number of trials per image is 1540 
different in the NSD and BOLD5000 datasets, the ncsnr values can still be directly compared. 1541 
 1542 
Univariate analysis of memory recognition 1543 
 1544 
For this analysis (results shown in Figure 4B), we used version 3 of the NSD betas (b3) in the fsaverage 1545 
preparation. Betas for each surface vertex were kept in percent signal change units. Using the behavioral 1546 
responses, we identified trials involving hits (subjects responded ‘old’ to a previously presented image) 1547 
and trials involving correct rejections (subjects responded ‘new’ to a novel image). Then, for each subject, 1548 
we calculated two-sample t-values at each surface vertex. This was done both for trials pooled within 1549 
individual NSD scan sessions as well as for trials pooled across all sessions. 1550 
 1551 
Representational similarity analysis 1552 
 1553 
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For this analysis (results shown in Figure 5), we used version 3 of the NSD betas (b3) in the fsaverage 1554 
preparation. Betas for each surface vertex were z-scored within each scan session, concatenated across 1555 
sessions, and averaged across repeated trials for each distinct image. To support the representational 1556 
similarity analysis84, we defined a set of ROIs (V1, V2, V3, pVTC, aVTC) on the fsaverage surface. This 1557 
was done by mapping the manually-defined V1, V2, and V3 from each subject to fsaverage, averaging 1558 
across subjects, and using the result to guide the definition of group-level ROIs. We also defined a 1559 
posterior and anterior division of ventral temporal cortex (pVTC and aVTC, respectively) based on 1560 
anatomical criteria. For each subject, we extracted betas for vertices within each ROI (concatenating 1561 
across hemispheres). We then computed Pearson's correlation between beta patterns across all possible 1562 
pairs of images. This yielded representational dissimilarity matrices (RDMs) with rows and columns 1563 
indexing distinct images (e.g., the RDMs for subject 1 have dimensionality 10,000 ´ 10,000 with 1564 
correlations corresponding to 49,995,000 possible pairs). 1565 
 1566 
To help visualize and interpret these large dissimilarity matrices, we performed t-distributed stochastic 1567 
neighbor embedding41,85 (t-SNE) using a perplexity level of 100 (Figure 5B–C). This projects the high-1568 
dimensional representations onto a two-dimensional plane such that the distance of a given pair on the 1569 
plane reflects that pair’s distance in the high-dimensional representation as accurately as possible. To 1570 
verify the strong categorical structure visible in pVTC and aVTC (see Figure 5B), we quantified the 1571 
similarity of the brain RDMs to a model RDM constructed from the category labels in the COCO dataset. 1572 
Specifically, we constructed an RDM from a binary matrix indicating the presence or absence of each of 1573 
the 80 COCO categories (cosine distance metric), and correlated this model RDM with each brain RDM. 1574 
This process was performed for mutually exclusive groups of 100 images drawn from all images 1575 
presented 3 times to a given subject (the number of groups was 100, 100, 62, 54, 100, 62, 100, and 54 1576 
for the eight subjects, respectively). We calculated the mean and standard error across results obtained 1577 
for different groups of images (Figure 5D). Finally, we investigated similarity of brain representations 1578 
across ROIs and subjects. This was done by isolating the shared515 images, constructing brain RDMs for 1579 
these images, and correlating brain RDMs across ROIs and subjects. The resulting second-order RDM is 1580 
shown in Figure 5E, with further quantification of this matrix shown in Figure 5F. 1581 
 1582 

Data availability 1583 
 1584 
The NSD dataset is freely available at http://naturalscenesdataset.org. The data are hosted in the cloud, 1585 
allowing researchers to exploit high-performance cloud computing to efficiently analyze the dataset. We 1586 
provide both raw data in BIDS format86 and prepared data files, along with extensive technical 1587 
documentation in the NSD Data Manual. To ensure strict validation for an upcoming Algonauts prediction 1588 
challenge87, the initial public release will withhold the last three NSD scan sessions from each participant 1589 
(about 8.4% of the NSD data). Images used for NSD were taken from the Common Objects in Context 1590 
database14 (https://cocodataset.org).  1591 
 1592 

Code availability 1593 
 1594 
We provide an archive of code used in this paper (https://github.com/cvnlab/nsddatapaper/), as well as 1595 
utility functions for working with the prepared NSD data (https://github.com/cvnlab/nsdcode/). Custom 1596 
algorithms developed for this paper include GLMsingle (https://github.com/cvnlab/GLMsingle/) and 1597 
fracridge (https://github.com/nrdg/fracridge/). Example scripts demonstrating scientific analyses of the 1598 
NSD data are available (https://github.com/cvnlab/nsdexamples/); these scripts may be useful for 1599 
teaching purposes. 1600 
 1601 
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Supplementary Note 1: 
Auxiliary data and resources in the NSD dataset 

 
Substantial amounts of resting-state data with physiological measurements 
 
A minimum of 100 minutes of resting-state data were acquired for each NSD subject. This large amount of data is appealing 
as it enables stable estimates of network correlations88. External physiological measures (pulse oximeter, respiratory belt) 
were also acquired in most of the scan sessions that included resting-state acquisition. Visual inspections of the 
physiological data (available online) suggest that the data are of excellent quality and that more than 90% of the pulse data 
and more than 95% of the respiratory data are usable. These physiological data play a critical role in identifying potential 
contaminants of resting-state signals89,90. Overall, the resting-state component of NSD is valuable not only for enriching 
interpretation of the core NSD experiment, but also as a standalone resource due to the sizable amount of data and use of 
7T imaging. 
 
Highly reliable diffusion data and derivatives 
 
The diffusion data included with the NSD dataset complement the extensive fMRI measurements. We pre-processed the 
raw diffusion data using the state-of-the-art DESiGNER pipeline methodology91 as implemented on brainlife.io92. As there 
is no accepted map of white matter in the human brain, the field lacks consensus on how to validate the accuracy of 
tractography results. We instead focused on reliability as a measure of quality and adopted a statistical approach that 
evaluates reliability of major tracts and connectivity matrices93. We find that the quality of the pre-processed diffusion data 
for each subject is high, as evidenced by the signal-to-noise ratio (Supplementary Figure 5B). We then proceeded to 
perform diffusion signal modeling94–98, anatomically-informed tractography99, and profilometry100. White-matter 
microstructural properties are found to be highly reliable for each subject (Extended Data Figure 6A). Structural 
connectivity matrices101 derived from tractography results are also highly reliable, both at the group level (Extended Data 
Figure 6B–C) as well as at the single-subject level (Extended Data Figure 6C, inset). The ready-to-use diffusion 
derivatives provided with NSD include a variety of macrostructural and microstructural measures, white-matter tracts, and 
structural connectivity matrices, as well as intermediary pre-processed outputs (such as denoised and spatially corrected 
diffusion volumes). These derivatives can be easily integrated into machine learning workflows, and serve as launching 
points for scientific investigations seeking to apply network neuroscience perspectives102,103 to understanding brain function 
in the NSD dataset. 
 
Extensive set of manually defined ROIs 
 
To increase the value of the NSD dataset to the broader community, we performed analysis of the data from the pRF and 
fLoc experiments and manually defined regions of interest (ROIs) based on the results. The defined ROIs include retinotopic 
visual areas based on the pRF results (V1, V2, V3, hV4), eccentricity-based regions based on the pRF results (bands 
between 0°, 0.5°, 1°, 2°, 4°, and beyond), and category-selective regions based on the fLoc results (body-, face-, place-, 
and word-selective regions). Representative examples illustrating the high quality of the localizer results and associated 
ROIs are shown in Extended Data Figure 7. NSD also includes manual segmentations of the thalamus (LGN, pulvinar, 
superior colliculus) and the medial temporal lobe (hippocampal subfields and surrounding subregions). These resources 
reduce overhead and facilitate scientific analyses of the NSD dataset. 
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Supplementary Note 2: 
Limitations of the NSD fMRI data 

 
Our examination of the NSD fMRI data did not reveal any severe problems or artifacts that could not be compensated for in 
data pre-processing. Nonetheless, there are several known limitations of the data that should be considered. EPI pulse 
sequences invariably suffer from signal dropout and spatial distortion in locations with magnetic field inhomogeneties. The 
NSD data exhibit signal dropout in typical locations such as near the ear canals and the frontal sinuses (see Figure 3F), 
and our approach for distortion correction may have some imperfections (see Supplementary Video 6). In a few fMRI scan 
sessions (6 out of 308; 1.9%), the subject exited the scanner and re-entered either on the same day or a different day to 
complete the session. We compensated for these occurrences in the pre-processing of the data, but they nonetheless 
contribute some variability. Due to hardware errors, behavioral responses are missing for a few of the NSD runs (2 out of 
3,408; 0.06%). A few fMRI scan sessions (4 out of 308; 1.3%) had slightly incomplete brain coverage due to subject motion. 
Finally, while NSD subjects were instructed to fixate, eye movements are not fully avoidable104 and are likely present to 
some degree in the data (see eyetracking results in Extended Data Figure 4). A comprehensive summary of data anomalies 
is available in the online materials. 
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Supplementary Note 3: 
Pre-processing and analysis of eyetracking data 

 
Eyetracking data and video recordings were carefully synchronized and cropped to match the fMRI data acquisition 
(nsd_et_crop.m). The eyetracking data were then pre-processed to reduce noise as detailed below 
(nsd_et_preprocessing.m). Note that the eyetracking data are variable in quality: the eyetracker frequently lost track of the 
pupil, thereby introducing noise to the data and causing missing samples. We carefully cleaned the data to the best of our 
ability, taking care to select parameters that work well for the majority of subjects and scan sessions. 
 
We implemented the following pre-processing steps. First, blinks and tracking noise were removed by excluding samples 
at which the pupil was lost entirely, excising data 100 ms before and 150 ms after each occurrence. Further, because 
recorded gaze positions tended to jump erratically to the screen edge whenever the pupil was lost, we excluded samples 
deviating more than 6° from central fixation, excising data 250 ms before and 250 ms after each occurrence. Next, we 
removed slow signal drift by linear detrending and median-centering of the gaze position time series (X and Y). This step 
assumes that the median gaze position corresponds to central fixation. Finally, the time-series data for gaze position and 
pupil size were downsampled to 100 Hz and smoothed using a 50-ms running average. Any eyetracking run containing 
fewer than 1/3 valid samples after pre-processing was deemed unusable and excluded from further analysis. 
 
Detailed analyses of the eyetracking data obtained for the NSD experiment are shown in Extended Data Figure 4. Because 
two of the subjects (S3 and S8) do not have eyetracking data acquired during the NSD experiment, we considered for these 
two subjects eyetracking data acquired during the nsdsynthetic experiment (which also required central fixation) as a proxy. 
This allowed aggregate analyses to be performed for these subjects (panels B and C), but precluded trial-wise time-resolved 
analyses (panel F), due to the different experimental design used in the nsdsynthetic experiment. 
 
Note that despite our best efforts to reduce noise in the eyetracking data, the data are still noisy. This can be appreciated 
by inspecting the eyetracking video recordings available online. Thus, not all deviations in the recorded data reflect actual 
eye movements, and results shown in Extended Data Figure 4 likely reflect an underestimation of the true fixation accuracy 
of the subjects. As an alternative approach, it may be possible to infer eye gaze from fMRI signal intensities in and around 
the eyeballs105,106. This could provide robust estimates of fixation accuracy, even for scan sessions where eyetracking was 
not conducted. 
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Supplementary Note 4: 
Pre-processing of the MRI data 

 
Pre-processing of anatomical data 
 
T1 and T2 volumes 
 
T1- and T2-weighted volumes were corrected for gradient nonlinearities using a custom Python script 
(https://github.com/Washington-University/gradunwarp) and the proprietary Siemens gradient coefficient file retrieved from 
the scanner. The multiple T1 and T2 volumes acquired for a given subject were then co-registered 
(preprocess_nsd_structuralalignment.m). This was accomplished by first co-registering the T1 volumes to each other (rigid-
body transformation; correlation metric; the first T1 volume serving as the target) and then by co-registering the T2 volumes 
to the T1 volumes (rigid-body transformation; mutual information metric; the prepared T1 data serving as the target). In the 
estimation of registration parameters, a manually defined 3D ellipse was used to focus the cost metric on brain tissue. 
Individual volumes were manually inspected and rejected if substantial image artifacts were visible (only the 2nd and 4th T1 
volumes for subject 8 were rejected). The final T1 and T2 data were created by performing cubic interpolation at a resolution 
of 0.5 mm. Results for the multiple acquired volumes were averaged (within modality) to increase contrast-to-noise ratio. 
Finally, the 0.5-mm volumes were resampled to create alternative 0.8-mm and 1.0-mm versions. These resampled versions 
are provided for the convenience of users.  
 
SWI volume (venogram) 
 
We co-registered the SWI volume (magnitude component only; corrected for gradient nonlinearities) to the prepared 1.0-
mm EPI volume (preprocess_nsd_SWI.m). To compensate for the acquisition being performed on different scanners, we 
used a slightly flexible nonlinear warp as implemented in ANTs 2.1.0 (BSplineSyN with parameters [0.1, 400, 0, 3]). The 
final SWI volume was prepared in the subject-native anatomical space by performing B-spline interpolation at a resolution 
of 0.5 mm. The resulting volume was then resampled to create alternative 0.8-mm and 1.0-mm versions. 
 
TOF volume (angiogram) 
 
We co-registered the TOF volume to the prepared 1.0-mm T1 volume (preprocess_nsd_TOF.m). This was accomplished 
using a slightly flexible nonlinear warp as implemented in ANTs 2.1.0 (BSplineSynN with parameters [0.1, 200, 0, 3]). To 
aid estimation of registration parameters, a temporary version of the TOF volume was used in which extremely bright pixels 
were dampened. The final TOF volume was prepared in the subject-native anatomical space by performing B-spline 
interpolation at a resolution of 0.5 mm. The resulting volume was then resampled to create alternative 0.8-mm and 1.0-mm 
versions. 
 
High-resolution T2 volume 
 
We co-registered the high-resolution T2 volume to the prepared 0.5-mm T2 volume (external_mtl.m). Given that these 
volumes were acquired on different scanners, we evaluated several strategies for achieving accurate co-registration. We 
obtained the best results by performing a simple linear co-registration (affine transformation; correlation metric) in 
combination with a rectangular box that focused the cost metric on regions of interest in the medial temporal lobe. The 
estimated registration was subsequently used to map labels defined on the high-resolution T2 volume to the subject-native 
anatomical space. 
 
De-identification 
 
We mapped a liberal brain mask defined in MNI space to the subject-native anatomical space, and then used the result to 
mask and thus de-identify the anatomical volumes (preprocess_nsd_applybrainmask.m). 
 
FreeSurfer processing 
 
The prepared 0.8-mm T1 volume was processed using FreeSurfer version 6.0.0 with the -hires option 
(analysis_freesurfer.m). Manual edits of tissue segmentation (labeling voxels as gray matter, white matter, or cerebrospinal 
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fluid) were performed for each of the eight subjects to optimize the accuracy of the cortical surface representations 
generated by FreeSurfer. The prepared 0.8-mm T2 volume was used to inform manual segmentation decisions, but was not 
explicitly used in the FreeSurfer processing. We also manually marked surface imperfections that remained even after 
manual edits; these are labeled in the surface inspections (Supplementary Video 2) and are largely confined to a few 
difficult regions located in the inferior aspects of the temporal and frontal lobes (see Figure 3F). 
 
Several additional FreeSurfer processing steps were performed. Using mris_expand, we generated cortical surfaces 
positioned at 25%, 50%, and 75% of the distance between the pial surface and the boundary between gray and white 
matter. These surfaces are useful for creating surface representations of the fMRI data. Multiple surfaces at different gray-
matter depths were created given the relatively high spatial resolution of the fMRI data (1.8-mm acquisition); this may 
represent a departure from standard fMRI workflows geared towards lower-resolution data. We also generated several 
flattened surface representations: for each hemisphere in each subject, we created a flattened version of the entire cortical 
sheet (using manually defined cuts) as well as flattened versions of cortical patches covering ventral temporal cortex and 
early visual cortex (patches were determined automatically based on a set of cortical patches defined on fsaverage). Finally, 
in line with the ‘surface voxels’ visualization technique32, we sampled 1-, 2-, and 3-mm volumetric test patterns onto surface 
vertices using nearest-neighbor interpolation (analysis_surfacevoxels.m). The test patterns, distributed with the dataset, 
may be useful to users for understanding the impact of cortical curvature on surface visualizations. 
 
Pre-processing of diffusion data 
 
Code scripts used to analyze the diffusion data are accessible via the hyperlinks indicated below, which refer to brainlife.io 
apps (http://brainlife.io)107. 
 
The prepared 0.8-mm T1-weighted volume for each subject was segmented into different tissue types using MRTrix3108 
(https://doi.org/10.25663/brainlife.app.239). The gray- and white-matter interface mask was subsequently used as a seed 
mask for white-matter tractography. For network generation, the HCP-MMP cortical parcellation109 was mapped to subject-
native surfaces and then to the volumetric Freesurfer segmentation (ribbon.mgz) for each subject 
(https://doi.org/10.25663/bl.app.23). 
 
The raw data from the four diffusion scans (99 AP, 99 PA, 100 AP, 100 PA) were corrected for gradient nonlinearities, 
concatenated, and then pre-processed following a published protocol91. Specifically, diffusion volumes were denoised and 
cleaned with respect to Gibbs ringing using MRTrix3 before being corrected for susceptibility, motion, and eddy distortions 
using FSL’s topup and eddy functions (https://doi.org/10.25663/brainlife.app.287). We note that the raw acquired diffusion 
volumes exhibit substantial ‘striping’ artifacts (in which every other slice appears spatially displaced), possibly reflecting 
within-volume motion caused by physical vibrations of the RF coil. We attempted to mitigate these effects using the mporder 
functionality of eddy, but we caution that some residual artifact may exist in the pre-processed results. Following these 
corrections, the diffusion volumes were bias-corrected and had background noise removed using MRTrix3. Finally, the 
diffusion volumes were co-registered to the 0.8-mm T1-weighted anatomical volume using FSL’s epi_reg (rigid-body 
transformation, boundary-based registration), and then resliced to 0.8-mm isotropic voxels. The diffusion data were 
organized into two runs: data from the 99 AP and 99 PA scans constitute ‘Run 1’ and data from the 100 AP and 100 PA 
scans constitute ‘Run 2’ (https://doi.org/10.25663/brainlife.app.371). To assess data quality, we calculated signal-to-noise 
ratio in the corpus callosum using workflow provided by Dipy 1.1110 (https://doi.org/10.25663/brainlife.app.120). 
 
Following pre-processing, brain masks were generated using Dipy’s median_otsu (https://doi.org/10.25663/bl.app.70). This 
mask was used in subsequent model fitting and tractography. Multiple models of myelinated microstructural organization 
were fit to the diffusion data from each run. This included the diffusion tensor (DTI) model96, diffusion kurtosis (DKI) model95, 
and the neurite orientation dispersion and density imaging94,98 (NODDI) models (https://doi.org/10.25663/bl.app.9, 
https://doi.org/10.25663/brainlife.app.365). The NODDI model was fit twice for each run: once for white-matter tract 
microstructure using an intrinsic free diffusivity parameter (d∥) of 1.7 ́  10-3 mm2/s, and once for cortical microstructure using 
d∥ = 1.1 ´ 10-3 mm2/s, following previously described procedures111. The constrained spherical deconvolution112 (CSD) 
model was fit for 4 spherical harmonic orders (Lmax = 2, 4, 6, 8) using MRTrix3 (https://doi.org/10.25663/brainlife.app.238). 
The fiber orientation distribution functions for Lmax = 6 and Lmax = 8 were subsequently used to guide anatomically-
constrained probabilistic tractography99 using MRTrix3 (https://doi.org/10.25663/brainlife.app.297). A total of 3 million 
streamlines across Lmax = 6 and Lmax = 8 for each run were generated, using a step size of 0.2 mm, minimum length of 25 
mm, maximum length of 250 mm, and a maximum angle of curvature of 35°. Finally, structural connectivity matrices 
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representing fiber density were generated using a combination of SIFT2113 and MRTrix3 
(https://doi.org/10.25663/brainlife.app.394). Fiber density was quantified as the number of streamlines connecting two 
regions divided by the average volume of the two regions. 
 
Following model fitting and tractography, 61 major white-matter tracts were segmented for each run using a customized 
version of the white matter query language114 (https://doi.org/10.25663/brainlife.app.188). Then, using Vistasoft 
(https://github.com/vistalab/vistasoft), outlier streamlines were removed (https://doi.org/10.25663/brainlife.app.195) and 
tract profiles (each tract sampled with 200 nodes) were generated for DTI, DKI, and NODDI measures 
(https://doi.org/10.25663/brainlife.app.361). Finally, these measures were mapped to the cortical surface following 
previously published procedures111 using FreeSurfer 7.0 and Connectome Workbench 1.4.2 
(https://github.com/Washington-University/workbench) (https://doi.org/10.25663/brainlife.app.379). 
 
Pre-processing of functional data 
 
Overall strategy 
 
We implemented a pre-processing approach that aimed to preserve as much spatial and temporal detail as possible. In 
short, the fMRI data were pre-processed by performing one temporal resampling to correct for slice time differences and 
one spatial resampling to correct for head motion within and across scan sessions, EPI distortion, and gradient 
nonlinearities. This produced volumetric fMRI time-series data in subject-native space for each NSD subject. The functional 
data were pre-processed independently of the anatomical data; this was done intentionally in order to avoid dependence of 
the pre-processed functional data on choices such as how to co-register the functional and anatomical data. Also, to 
minimize the risk of inaccurate or unwanted assumptions, we did not include any temporal filtering (e.g. detrending, 
confound regression, censoring). Pre-processing results were carefully visually inspected to ensure quality control. There 
were a few anomalous cases, such as acquisition being split across two different scan sessions; special modifications were 
made to the pre-processing to accurately compensate for these occurrences (see online notes for details). 
 
First-stage pre-processing 
 
Given the fMRI data acquired in a scan session, a series of steps were performed (preprocess_nsd.m, preprocessfmri.m): 

1. Temporal resampling. A cubic interpolation of each voxel’s time-series data in each run was performed. This 
interpolation corrected differences in slice acquisition times (as determined from the DICOM header) and also 
upsampled the data (in the same step) to either 1.333 s (standard-resolution preparation) or 1.000 s (high-resolution 
preparation). Data were prepared such that the first time-series data point coincides with the acquisition time of the 
first slice acquired in the first volume of each run. The upsampling exploits the benefits of temporal jitter between 
the acquisition and the experiment and synchronizes the time-series data to convenient multiples of the experiment 
trial structure73. For example, in the standard-resolution preparation, there are 3 time points for each 4-s trial in the 
NSD experiment. 

2. Fieldmap preparation. The multiple fieldmaps acquired in the scan session (3.6-mm slices) were upsampled using 
nearest-neighbor interpolation to match the slice resolution of the fMRI data (1.8-mm slices). The fieldmaps were 
then phase-unwrapped using the FSL utility prelude and regularized by performing 3D local linear regression using 
an Epanechnikov kernel with radius 5 mm. Values in the magnitude component of the fieldmaps were used to 
regularize the fieldmaps and the regression in order to improve robustness of the field estimates. Finally, the 
fieldmaps were linearly interpolated over time, producing an estimate of the field for each fMRI volume acquired. 
This time-varying fieldmap strategy is atypical for fMRI workflows, but we have found it to be highly effective32. 

3. Spatial undistortion. The temporally resampled volumes from Step 1 were undistorted based on the field estimates 
from Step 2 using the standard unwarping method115. Undistorted volumes were generated using cubic 
interpolation. 

4. Motion estimation. The undistorted volumes from Step 3 were used to estimate rigid-body motion parameters using 
the SPM5 utility spm_realign (the first fMRI volume in the scan session served as the reference). A manually defined 
3D ellipse was used to focus the cost metric on brain regions unaffected by gross susceptibility effects. Note that 
the estimated motion parameters reflect temporally upsampled data and should be interpreted accordingly (e.g. 
when assessing framewise displacement). Also, note that the motion parameters may reflect apparent image motion 
due to respiration-induced B0 fluctuations116; this was particularly apparent in subject 3. 
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5. Spatial resampling. A single cubic interpolation was performed on the temporally resampled volumes from Step 1 
in order to correct for the combined effects of head motion and spatial distortion. 

 
Gradient nonlinearity correction and session registration 
 
Given the results of the first-stage pre-processing, we computed the mean fMRI volume and corrected this volume for 
gradient nonlinearities (preprocess_nsd_epigradunwarp.m). We then co-registered this gradient-corrected volume to the 
gradient-corrected volume from the first NSD scan session (affine transformation, correlation metric). Thus, the first NSD 
scan session determined the target space for preparing fMRI data from different scan sessions 
(preprocess_nsd_epialignment.m). 
 
Second-stage pre-processing 
 
We repeated the pre-processing steps (Steps 1–5 above) but with the final spatial resampling step incorporating the effects 
of the gradient nonlinearity correction and the session registration (preprocess_nsd_secondstage.m). In this way, a single 
cubic interpolation is used to compensate for the effects of head motion, spatial distortion, gradient nonlinearities, and 
session registration. For this final interpolation step, we used either a 1.8-mm grid (standard-resolution preparation) or a 
1.0-mm grid (high-resolution preparation). The latter approach intentionally upsamples the data in order to exploit the 
benefits of small head displacements and preserve as much spatial detail as possible32,34. To minimize storage 
requirements, the interpolations were performed within a 3D box that was just large enough to cover the brain of each 
subject. 
 
To facilitate assessment of T2* effects, we created a bias-corrected version of the mean EPI volume 
(analysis_biascorrection.m). For each preparation, we took the mean EPI volume and fit a 5th-degree 3D polynomial, 
considering only voxels labeled as cortical or cerebellar gray matter in the FreeSurfer aseg file. The fitted volume (‘coilbias’) 
was then divided from the mean EPI volume, producing the bias-corrected volume (‘bc’). 
 
Final outputs 
 
The final result of pre-processing was volumetric fMRI time-series data in subject-native space. Two versions were 
generated: the standard-resolution version was prepared at a spatial resolution of 1.8 mm and a temporal resolution of 
1.333 s, whereas the high-resolution version was prepared at a spatial resolution of 1 mm and a temporal resolution of 
1.000 s. These two volumetric versions of the fMRI data are the main versions of the data. However, we do create some 
alternative versions of the data: for example, a surface-based version of the NSD betas (‘nativesurface’) is prepared for the 
convenience of users. We prioritize the volume-based format as the main version of the data; this is primarily because it is 
a simple format, amenable for both cortical and sub-cortical analyses, and does not incorporate specific decisions about 
how to map functional data onto cortical surface representations. 
 
Calculation of coordinate transformations between volumetric and surface-based representations of 
functional and anatomical images 
 
We performed several analyses related to mapping data between different spaces: 

• Mapping between functional and anatomical spaces. We co-registered the mean fMRI volume (1-mm preparation; 
mean of first five NSD sessions) to the prepared 1.0-mm T2 volume 
(preprocess_nsd_functionaltostructuralalignment.m). To compensate for acquisition on different scanners, we used 
a slightly flexible nonlinear warp as implemented in ANTs 2.1.0 (BSplineSyN with parameters [0.1, 400, 0, 3]). A 
small amount of nonlinearity was necessary to achieve accurate co-registration (see inspections provided online). 

• Changing resolutions in anatomical space. For resampling data to different anatomical resolutions (0.5-, 0.8-, or 
1.0-mm), we used an ideal Fourier filter (10th-order low-pass Butterworth filter) followed by cubic interpolation 
(changevolumeres.m). 

• Mapping to and from fsaverage. We calculated the indexing information that maps subject-native surfaces to and 
from fsaverage using nearest-neighbor interpolation in the spherical space defined by FreeSurfer. Visual 
inspections confirm the quality of the folding-based alignment achieved by FreeSurfer (Supplementary Video 3). 
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• Mapping to and from MNI. Using FSL’s utility fnirt, we co-registered the subject-native prepared 1.0-mm T1 volume 
to the MNI152 T1 1-mm template provided by FSL (preprocess_nsd_MNIandbrainmask.m). Visual inspections 
confirm the quality of the registration (Supplementary Video 4). 

• Converting surface data to volumetric format. We implemented a method that, for a given target anatomical volume 
with resolution R mm, allows each surface vertex to contribute a triangular (linear) kernel of size +/– R mm and then 
calculates a weighted average of data values at the position of each voxel in the volume 
(cvnmapsurfacetovolume_helper.m). 

Based on the results of the above analyses, we calculated coordinate transformations that indicate how to map between 
the functional spaces, the anatomical spaces, the subject-native surfaces, fsaverage, and MNI space 
(preprocess_nsd_calculatetransformations.m). Finally, we created a lightweight utility (nsd_mapdata.{m,py}) that uses the 
coordinate transformations to map user-supplied data from one space to another space under a given interpolation scheme 
(nearest-neighbor, linear, cubic, winner-take-all). For example, data in subject-native functional space can be mapped to 
MNI space or a subject-native cortical surface using a single interpolation of the functional data. The use of interpolation to 
map volumetric data onto surface representations (as opposed to incorporating spatial kernels tailored to the cortical 
surface) helps maximize spatial resolution and avoids making strong assumptions about cortical topology. Nonetheless, the 
user is free to apply other methods (e.g., FreeSurfer, Connectome Workbench) to perform the mapping. We used the 
nsd_mapdata utility to perform a number of mundane but useful transformations, such as generating versions of the 
anatomical volumes that are matched to the functional volumes (analysis_transforms.m). Label data (e.g. ROI labels) were 
transformed by performing a separate interpolation for each label and then a winner-take-all operation. 
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Supplementary Note 5: 
Localizers and regions of interest 

 
Analysis of the pRF experiment 
 
The pre-processed fMRI data from the pRF experiment were analyzed using the Compressive Spatial Summation model80 
as implemented in analyzePRF (analysis_prf.m). First, the time-series data from the three repetitions of each run type 
(multibar, wedgering) were averaged. Stimulus apertures indicating the position of the texture were prepared at a resolution 
of 200 pixels ´ 200 pixels. We then used analyzePRF (http://cvnlab.net/analyzePRF/) to estimate pRF parameters for each 
voxel (canonical hemodynamic response function; seedmode 2). Results were mapped to the cortical surface by performing 
linear interpolation on the volumes (1-mm preparation) and then averaging across cortical depth. To quantify behavioral 
performance, we calculated, for each run, (A – B)/C ´ 100, where A indicates the number of successful detections of color 
changes (button pressed within 1 s of a color change), B indicates the number of extraneous button presses, and C indicates 
the total number of color changes. Performance averaged across the six runs ranged between 93.5–98.9% for the eight 
NSD subjects. 
 
Analysis of the fLoc experiment 
 
The pre-processed fMRI data from the fLoc experiment were analyzed using GLMdenoise35,117, a data-driven denoising 
method that derives estimates of correlated noise from the data and incorporates these estimates as nuisance regressors 
in a general linear model (GLM) analysis of the data (analysis_floc.m). We coded the 10 stimulus categories using a 
“condition-split” strategy32 in which the trials associated with a single category were split into separate conditions in each 
run. We used six condition-splits, thereby producing six response estimates (betas) for each category. After fitting the GLM, 
t-values were computed from the GLM betas in order to quantify selectivity for different categories and domains (e.g., 
selectivity for faces was quantified by calculating a t-value that contrasts adult and child faces vs. all other categories). 
Results were mapped to the cortical surface by performing linear interpolation on the volumes (1-mm preparation) and then 
averaging across cortical depth. To quantify behavioral performance, we calculated the hit rate for each run (button pressed 
within 1 s of an oddball image). Performance averaged across the six runs ranged between 90.8–97.5% for the eight NSD 
subjects. 
 
Regions of interest (ROIs) 
 
Volume-based subject-native ROIs 
 
The thalamus ROI collection consists of ROIs related to the lateral geniculate nucleus, pulvinar, and superior collicus 
(external_subcortical.m). Manual labeling of these ROIs was performed by an expert (M. Arcaro) based on the T1 and T2 
anatomical volumes obtained for each subject as well as functional results obtained in prior studies118, projected from MNI 
space to the native space of each subject. Labels were defined in 0.5-mm anatomical space and were resampled to create 
alternative 0.8-mm and 1.0-mm versions. To provide labels in functional space, the 0.8-mm anatomical volume was mapped 
to the 1.0-mm functional space, and the 1.0-mm anatomical volume was mapped to the 1.8-mm functional space. 
 
The MTL ROI collection consists of ROIs related to the hippocampus and surrounding brain regions in the medial temporal 
lobe (external_mtl.m). Manual labeling of these ROIs was performed by an expert (W. Guo) based on the high-resolution 
T2 volume obtained for each subject, following a published protocol119. Labels were defined on the raw high-resolution 
volume, and were mapped to 0.5-mm anatomical space using the previously determined affine transformation. Note that 
the resulting labels have some amount of jaggedness due to the anisotropy of the voxels in the high-resolution T2 volume. 
Alternative versions of the labels were created in the same way as described for the thalamus labels. 
 
Surface-based subject-native ROIs 
 
Results of the pRF experiment were used to define prf-visualrois, a collection of ROIs consisting of the dorsal and ventral 
subdivisions of V1, V2, and V3, and area hV4 (analysis_drawrois_prf*.m). These ROIs were manually drawn on cortical 
surfaces by experts (K. Kay, J. Winawer) based on pRF angle and eccentricity estimates, following common practices120. 
The ROIs extended to the fovea (0° eccentricity) but were restricted to the extent of cortex stimulated by the pRF experiment. 
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The pRF results were also used to define prf-eccrois, a collection of ROIs consisting of concentric regions with increasing 
eccentricity coverage (0.5°, 1°, 2°, 4°, >4°). Labeled regions were confined to the same cortical extent labeled in prf-
visualrois. 
 
Results of the fLoc experiment were used to define several collections of category-selective ROIs, including commonly used 
ROIs such as extrastriate body area (EBA), fusiform face area (FFA), parahippocampal place area (PPA), and visual word 
form area (VWFA) (analysis_drawrois*.m). These ROIs were manually drawn on cortical surfaces by experts (K. Kay, A. 
White, A. Bratch) based on a combination of anatomical location (relative to sulci and gyri) and stimulus selectivity t-values 
obtained from the fLoc experiment, following general procedures used in prior studies31,121,122. For each ROI collection (floc-
bodies, floc-faces, floc-places, floc-words), several ROIs exhibiting preference for the associated category were defined 
(e.g., floc-faces was based on t-values for the contrast of faces > non-faces). ROIs were defined by drawing a polygon 
around a given patch of cortex and then restricting the ROI to vertices within the polygon that satisfy t > 0. This liberal 
criterion was used to provide maximum flexibility (the user can easily restrict the ROI further using the provided t-value 
volumes).  
 
Surface-based atlas ROIs 
 
To help summarize results in this paper, we defined nsdgeneral, an ROI in occipital cortex reflecting regions generally 
responsive in the NSD experiment (analysis_drawnsdgeneral.m). This ROI was drawn on fsaverage based on group-
average results for variance explained by the b3 version of the GLM. The ROI is shown in Figure 3F. 
 
To provide anatomical reference, we defined corticalsulc, a collection of ROIs consisting of major sulci and gyri, and streams, 
a collection of ROIs reflecting large-scale divisions of visual cortex (early, midventral, midlateral, midparietal, ventral, lateral, 
parietal). These ROI collections were manually drawn on fsaverage. 
 
For convenience, the NSD dataset also includes a few publicly available atlases. These include Kastner2015123, an atlas of 
visual topography, and HCP_MMP1109, a whole-brain cortical parcellation based on multimodal measures. Both atlases 
were prepared in fsaverage and converted as described below. 
 
Conversion of surface-based ROIs 
 
A number of conversions were performed to prepare volumetric versions of surface-based ROIs 
(analysis_surfaceroistovolume.m). ROIs defined on fsaverage were mapped to subject-native surfaces using nearest-
neighbor interpolation. ROIs defined on subject-native surfaces were mapped to 0.8-mm anatomical space by assigning 
labels to the 3 depth-dependent surfaces and then performing weighted linear conversion (as described earlier). The 0.8-
mm volume was then mapped to the 1.0-mm and 1.8-mm functional spaces. 
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Supplementary Modeling Note 1: 
Estimation of pRFs from the NSD responses 

 
For this analysis (results shown in Extended Data Figure 9), we used version 3 of the NSD betas (b3) in the nativesurface 
preparation. Betas for each surface vertex were z-scored within each scan session, concatenated across sessions, 
averaged across repeated trials for each distinct image, and then re-normalized using a scale and offset such that 0 
corresponds to 0% BOLD signal change and the standard deviation of the betas equals 1. 
 
To prepare stimuli for pRF estimation, the NSD images were converted to grayscale, resized to 800 pixels ´ 800 pixels 
(cubic interpolation), and squared to mimic the luminance response of the display. The images were then placed against 
the gray background and divided into a 51 ´ 51 grid such that the first and last grid elements were centered at the edges of 
the stimulus (each grid element spanned 0.168° ´ 0.168°). Finally, to quantify local contrast, we computed the standard 
deviation of pixel values within each grid element. 
 
Based on the local-contrast preparation of the NSD images, we used analyzePRF (http://cvnlab.net/analyzePRF/) to fit the 
Compressive Spatial Summation pRF model80 to the trial-averaged betas obtained for each vertex. The non-shared NSD 
images were used as training data; the shared NSD images were used as validation data. pRFs were constrained to have 
non-negative gain. No offset term was included in the model (opt.maxpolydeg = NaN); thus, the model necessarily predicts 
a response of 0 for an image with zero contrast. For model fitting, an initial gridding of model parameters was performed 
(opt.seedmode = 2), and parameter optimization started from the best parameter combination (opt.modelmode = 2; 
opt.algorithm = 'trust-region-reflective'). Model fitting produced, for each vertex, an estimate of pRF angle, eccentricity, size, 
exponent, and gain, as well as variance explained in the training data and the validation data. 
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Supplementary Modeling Note 2: 
Encoding models based on deep convolutional neural networks 

 
For this analysis (results shown in Figure 6), we used version 3 of the NSD betas (b3) in the 1.8-mm volume-based 
preparation. Before modeling, betas for each voxel were z-scored within each scan session and concatenated across 
sessions. Models were implemented using PyTorch. 
 
Model architecture 
 
We considered several variants of voxel-wise encoding models46 that attempt to predict the NSD betas. All three models 
consist of (i) a feature extractor implemented as a convolutional neural network (CNN) and (ii) a network-to-brain coupling 
model that maps extracted features into predictions of activity observed for individual voxels. 
 
In the first model (AlexNet), the feature extractor is the AlexNet CNN124, a task-optimized network that has been trained to 
classify object categories in the ImageNet database125. In the second model (GNet), the feature extractor is a different 
CNN—referred to here as ‘GNet’—a brain-optimized network that is trained to directly predict brain activity in the NSD 
dataset. The third model is a simple control model in which the feature extractor consists of a single fixed layer of Gabor 
filters24. The specific network architectures for AlexNet and GNet are illustrated in Extended Data Figure 10. 
 
To facilitate direct comparison, all models are designed to have comparable coupling models. For GNet, both the feature 
extractor and coupling model are trained jointly using brain data; for AlexNet and the Gabor models, the feature extractors 
are fixed and only the coupling model is trained using brain data. 
 
The CNNs in the AlexNet, GNet, and Gabor models consist of hierarchically composed functions of an input image 𝑥: 

𝑒!(𝑥) = η! ∘ 𝑒!"#(𝑥) 
where η! is a feature extractor that operates at layer 𝑙 on the output of 𝑒!"#(𝑥) (also a composite function). e! may denote 
an arbitrary sequence of transformations. The encoding models leverage the intermediate representations 𝑒!(𝑥), which are 
feature maps with pixels denoted by [𝑒!(𝑥)]$%&, where (𝑖, 𝑗) is the location of the pixel in the 𝑘th feature map. Predicted brain 
activity for voxel v, 𝑟'1 , 
is given by the expression: 

𝑟'1 = 𝑏' +4𝑤'$𝑓7Φ$(𝑥)9
$

 

where 𝑤'$ are feature weights for voxel v and feature k, 𝑏' is a bias term,  

Φ$(𝑥) =4𝑓7[𝑒#(𝑥)]$!%&9𝑔'%&
#

&,%

⊕…4𝑓7[𝑒)(𝑥)]$"%&9𝑔'%&
)

&,%

 

𝑓(⋅) is typically a compressive nonlinearity, 𝑔'%&! 	indicates a weight assigned to pixel (𝑖, 𝑗)	in the 𝑙th feature map, and ⊕ 
denotes summation along the feature axis 𝑘 = (𝑘#, … 𝑘)). Note that this formulation incorporates feature-space separability, 
which reduces overfitting and generally improves prediction accuracy for brain activity19. 
 
In the Gabor model, the feature extractor consists of a single fixed set of convolutions involving 12 log-spaced spatial 
frequency Gabor wavelets between 3 and 72 cycles/stimulus and constructed at 6 evenly spaced orientations between 0 
and 𝜋19. 
 
Spatial pooling fields 
 
Constraints were placed on the weights (𝑔'%&! )—termed ‘spatial pooling fields’—that couple the feature maps to voxel activity. 
For the AlexNet- and Gabor-based encoding models, the spatial pooling field for each voxel was a 2D isotropic Gaussian 
that was applied to all feature maps (see Extended Data Figure 10B, middle). We find that this constrained model of 
spatial pooling typically yields better prediction accuracy (relative to other possible variants) in the scenario where feature 
extraction parameters are fixed19. For the GNet-based encoding model, the weights of the spatial pooling fields were 
independently adjustable; hence, we refer to these as flexible spatial pooling fields (see Extended Data Figure 10B, left). 
Feature maps with the same spatial resolution were grouped together, and a distinct, independently optimized spatial 
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pooling field was applied to each group. Thus, the GNet model for each voxel was specified by multiple, independently 
optimized spatial pooling fields. 
 
Model training and validation 
 
Given the demanding memory requirements of training large-scale neural networks to jointly predict tens of thousands of 
voxels, we selected the four NSD subjects with the highest noise ceilings (see Figure 3G). For the selected subjects (1, 2, 
5, 6), NSD betas were extracted from visual areas V1–hV4. These betas were separated into those evoked by the 
shared1000 images and those that were not; the former were designated as the validation set, while the latter were 
designated as the training set. For example, for subject 1, there were 9,000 images ´ 3 trials = 27,000 samples in the 
training set, and 1,000 images ´ 3 trials = 3,000 samples in the validation set. After model training, accuracy was quantified 
as the voxel-wise correlation between model predictions and observed responses in the validation set. 
 
For the AlexNet-based encoding model, parameters of the feature extractors were pre-trained based on classification of 
objects in the ImageNet database47. For both the AlexNet- and Gabor-based encoding models, feature weights for the 
coupling model were optimized via ridge regression, with the ridge parameter selected to maximize accuracy on a held-out 
subset (20%) of the training data. Line search was used to optimize the position and size of the Gaussian spatial pooling 
field for each voxel (see Extended Data Figure 10B, right). In total, the AlexNet-based encoding model consisted of 2,692 
free parameters per voxel (2,688 feature weighting parameters, 3 spatial pooling parameters, 1 bias term), and the Gabor-
based encoding model consisted of 76 free parameters per voxel (72 feature weighting parameters, 3 spatial pooling 
parameters, 1 bias term). 
 
For the GNet-based encoding model, parameters of the feature extractors, spatial pooling fields, and feature weights were 
all optimized via stochastic gradient descent of an 𝐿*-norm weighted loss function: 

𝐿(𝑟', 𝑟'1) =
∑ ⌊𝜌'*⌋(𝑟' − 𝑟'1)*'

∑ ⌊𝜌'*⌋'
 

where ⌊𝜌'*⌋  is the batchwise prediction accuracy for a given voxel 𝑣  with an imposed floor of 0.1 in order to permit 
contribution of yet-to-be-predicted voxels. In total, the GNet-based encoding model consisted of 1,034,944 free parameters 
that are shared across voxels, plus 1,307 free parameters per voxel. 
 
Two versions of the GNet model were developed and evaluated. In the single-subject GNet model, different instantiations 
of GNet were created for different subjects, and only the data from a given subject were used to train the GNet-based 
encoding model for that subject. In the multiple-subject GNet model, a single instantiation of GNet was created for all four 
subjects, and data from all subjects were used to train the GNet-based encoding models. In this scheme, all subjects share 
a common feature extractor, but each subject has independently adjusted coupling models and feature weights. 
 
To train the GNet-based encoding model, stochastic gradient descent with early stopping was performed using the ADAM 
optimizer126 (lr = 10"+, β# = 0.99, β* = 0.99). Parameter updates for feature extractors, spatial pooling fields, and feature 
weights were alternated to promote stability of the training procedure. 
 
Note that the NSD subjects view largely non-overlapping sets of images. Thus, when training GNet on data from multiple 
subjects, we used a modified procedure for selecting batches of training data. For each iteration of training, we first extracted 
a batch of training samples from one subject’s data and calculated the gradient with respect to the loss function. Coupling 
model parameters for that subject and feature extractor parameters were then updated and the process was repeated until 
all batches from all subjects were used. This corresponded to one training epoch.  
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Supplementary Figures 
 

 
 
Supplementary Figure 1. Details on the quantification of tSNR. This figure shows example tSNR results (nsd20 scan 
session, first NSD run). The middle slice in each of three orthogonal views (axial, sagittal, coronal) is displayed. To compute 
tSNR, the raw fMRI volumes (with no pre-processing) from a given run are obtained, and the mean across volumes is 
computed (Mean EPI). A brain mask is computed by identifying voxels whose intensity is at least 10% of the 99th percentile 
of intensities in the mean volume (Mask). tSNR is calculated by quadratically detrending the time-series of each voxel 
(preserving the mean) and then computing the mean divided by the standard deviation of the time-series values (tSNR). A 
summary tSNR value is determined by calculating the median tSNR across voxels within the brain mask. This corresponds 
to the summary metric shown in Figure 2D, left (the inset shows results from subject 2). 
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Supplementary Figure 2. Details on the quantification of head motion. A, Example motion parameter estimates (nsd20 
scan session, first NSD run, 1.8-mm data preparation). The rotation parameters, originally in radian units, are multiplied by 
50 in order to allow interpretation in terms of millimeters of displacement for a circle of diameter 100 mm77. Motion 
parameters are relative to the reference volume which is the first volume in each scan session. Framewise displacement 
(FD), calculated as the sum of the absolute differences of the motion parameters for successive pairs of volumes, is also 
plotted. The mean FD across volumes is indicated in the plot titles, and corresponds to the summary metric shown in Figure 
2D, middle (the inset shows results from subject 5). B, Distributions of FD. From the 1.8-mm data preparation, we plot 
histograms of FD observed across all volumes in all NSD runs (top row) and all resting-state (RS) runs (bottom row). 
Apparent head motion due to the interaction of respiration and the main magnetic field127,128 is present in the NSD data and 
can be seen in the anterior-to-posterior translation parameter which corresponds to the EPI phase-encode direction (see 
panel A, subjects 3 and 5). Thus, in addition to the original FD values (blue histograms), we also plot a modified version of 
FD (orange histograms) in which we simply omit the anterior-to-posterior translation parameter. This is likely to provide 
more accurate estimates of actual head motion, though more accurate compensation might be achieved by frequency-
based filtering based on the actual respiratory behavior of each subject127,128. Using a threshold of 0.15 (vertical red lines), 
we report the percentage of volumes whose modified FD exceeds this threshold (red inset numbers). Overall, the results 
indicate that most of the data are free of large head motions (with the possible exception of subject 8) and that the NSD and 
RS runs have comparable levels of head motion.   
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Supplementary Figure 3. Inspection of raw time-series data. To assist interpretation of the raw data shown in this figure, 
we fit a simple ON-OFF GLM model (see Methods) that assumes a fixed response to each presented image. For each 
subject, we show results for one axial slice in one NSD run (nsd20 scan session, run01, slice 42 of 84). The image on the 
left shows raw fMRI data (the first acquired volume in the run). The image in the middle shows the amount of variance 
explained (R2) by the ON-OFF model. We select two voxels for detailed inspection: the voxel with the highest R2 (labeled 
‘2’) and a control voxel located 18 mm (a distance of 10 voxels) towards the anterior direction (labeled ‘1’). The plots on the 
right show raw time-series data for these two voxels. Thin gray vertical lines mark stimulus onsets. Several observations 
can be made. First, in each subject, the raw time-series data for the high R2 voxel (bottom plot) show clear stimulus-evoked 
signals: the blank trials that occur intermittently during the run lead to decreases in signal intensity that are captured by the 
ON-OFF model fit. Note that during periods of time involving only stimulus trials, there are in fact small modulations present 
in the ON-OFF model fit, and these correspond to the onsets of individual images. Second, in each subject, the raw time-
series data for the control voxel (top plot) show little discernible stimulus-evoked signals, thereby providing an important 
comparison. Note that real differences in neural activity evoked by different images are expected to manifest as signal 
fluctuations in the data, and thus may account for some of the observed time-series fluctuations. Also, note that since motion 
correction has not been performed for these raw data inspections, it is likely that the observed slow signal drifts are due, in 
part, to small shifts in head position. Overall, these results confirm the quality of the NSD data by demonstrating that 
stimulus-evoked signals can be readily observed in the raw time-series data. 
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Supplementary Figure 4. Quantification of functional imaging stability. We took the mean fMRI volume (1-mm 
preparation) in each scan session, bias-corrected the volume by dividing by a fitted 3D polynomial (autoqc_nsd_grand.m), 
and then computed pairwise correlation across sessions. Dotted white lines mark increments of five NSD scan sessions. 
Inspection of similarity of the mean EPI volume across sessions reveals a few minor anomalies. We investigated these 
cases further and determined the following: the nsd36 scan session in subject 7 involved a poor scanner shim, which was 
largely but not fully corrected by the fieldmap-based processing; the nsd01 scan session in subject 8 involved an unusually 
large amount of head motion, which resulted in some residual spatial distortion; and the nsd12–nsd16 scan sessions in 
subject 8 involved a temporary sinus infection near frontal cortex that manifested as bright signal intensities in the EPI 
volumes outside the brain but otherwise did not cause any data problems. For visual inspection of these effects, see 
Supplementary Videos 6–7. 
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Supplementary Figure 5. Diffusion processing for investigation of white-matter connectivity. A, Schematic of the 
diffusion pre-processing pipeline. Diffusion volumes were corrected for noise, Gibbs ringing, susceptibility, motion, eddy 
currents, and bias fields before being co-registered to the T1 anatomy. Following pre-processing, the data were organized 
into two runs (corresponding to the 99-direction and 100-direction scans, respectively). B, Signal-to-noise ratio, computed 
in the corpus callosum (dots and error bars indicate mean and standard deviation across volumes, respectively; for Runs 1 
and 2, error bars reflect 184 and 186 volumes, respectively). C, White-matter tract segmentation from an example subject 
(subject 7). White-matter tracts are organized based on typical anatomical and functional definitions into associative (left), 
projection (middle), and callosal (right) tracts and overlaid on the T1 anatomy. D, Reliability of MD, ODI, NDI, ISOVF, Mean 
Kurtosis (MK), Axial Kurtosis (AK), and fiber count, length, and volume. Each dot indicates results averaged along a single 
tract. Pearson’s correlation (r) and root-mean-squared error (RMSE) for each measure are indicated in the inset. E, 
Macrostructural and microstructural properties observed for different tracts. Error bars indicate ± 1 SEM across 8 subjects. 
F, Microstructural properties of cortical regions. Shown are tensor (FA; left), NODDI (ODI; middle), and kurtosis (MK; right) 
results mapped to the cortical surface of the example subject, with dorsal (top) and ventral (bottom) viewpoints of occipital 
cortex. Quantitative results are shown on the right, where each dot indicates results obtained for a single region in the HCP-
MMP1 parcellation. 
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Supplementary Figure 6. Additional details regarding noise ceiling estimates. This figure provides additional detail on 
noise ceiling results shown in Figure 3F–G. All results reflect vertices within the nsdgeneral ROI. A, Detailed comparison 
of noise ceiling results for different beta versions. Each subplot is a 2D histogram comparing noise ceilings for two different 
beta versions. Improvements in noise ceilings are consistent across voxels and subjects. B, Reliability of noise ceiling 
estimates. Here we show split-half noise ceiling estimates for beta version 3. Each subplot is a 2D histogram comparing 
noise ceiling estimates calculated from two halves of the data from a given subject. The inset indicates the correlation 
between the two sets of estimates. Noise ceiling estimates are highly stable owing to the large number of images that inform 
the noise ceiling estimates. 
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Supplementary Figure 7. Recognition memory effects in the NSD data. Same format as Figure 4B, but showing results 
for all individual subjects. Positive values indicate BOLD responses are greater for hits than for correct rejections, whereas 
negative values indicate BOLD responses are greater for correct rejections than for hits. The observed decrease in the 
magnitudes of the t-values (e.g. from nsd05 to nsd20) likely reflects a decrease in the subjects’ recognition accuracy over 
the course of the experiment.  
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Supplementary Videos 
 

 
 
Supplementary Video 1. Inspection of image quality and co-registration quality. Videos available online 
(https://osf.io/tg5dw/ - T1-T2-EPI.mp4), https://osf.io/g86ep/ - T2-SWI.mp4, https://osf.io/s7b2a/ - T1-TOF.mp4). Three 
videos are provided. One video cycles between the T1, T2, and EPI volumes, another cycles between the T2 and SWI 
volumes, and the third cycles between the T1 and TOF volumes. All volumes have been transformed to a common 
anatomical space (set by the T1 volume) in the course of data pre-processing. 
 

 
 
Supplementary Video 2. Inspection of cortical surfaces. Videos available online (https://osf.io/zyb3t/ - subj{01–
08}_{axial,coronal,sagittal}.mp4). These videos show the FreeSurfer cortical surface reconstructions superimposed on the 
T1 volume. Left hemisphere white and pial surfaces are colored blue and cyan, respectively; right hemisphere white and 
pial surfaces are colored red and yellow, respectively. Blue voxels indicate locations that have been judged to have surface 
imperfections. 
 

 
 
Supplementary Video 3. Inspection of fsaverage alignment. Video available online (https://osf.io/gh5bs/ - 
fsaveragecheck.mp4). This video cycles through (i) the binarized curvature of each of the NSD subjects mapped via nearest-
neighbor interpolation to fsaverage, (ii) the average of this binarized curvature across subjects, and (iii) the fsaverage 
binarized curvature. The video is useful for assessing the quality of the folding-based alignment performed by FreeSurfer. 
Notice that the group-average curvature resembles the fsaverage curvature, as expected. 
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Supplementary Video 4. Inspection of MNI alignment. Video available online (https://osf.io/p3zqm/ - MNIcheck.mp4). 
This video cycles through the T1 volumes of the NSD subjects after nonlinear warping to MNI space and the MNI template 
volume. The video is useful for assessing the quality of the nonlinear volume-based alignment. 
 

 
 
Supplementary Video 5. Inspection of raw and pre-processed EPI volumes. Videos available online 
(https://osf.io/zyb3t/ - subj{01–08}_nsd10_run06_{raw,pp}.mp4). These videos quickly scroll through all EPI volumes in a 
sample run. This is useful for assessing quality and stability of the functional imaging. 
 

 
 
Supplementary Video 6. Inspection of mean EPI across scan sessions (volume visualization). Video available online 
(https://osf.io/ydf9j/ - grandmean.mp4). This video assesses the results of pre-processing the fMRI data. Each frame shows 
the mean EPI volume from a single scan session (1-mm data preparation). Note that session 0 corresponds to the prffloc 
scan session and the last two scan sessions from each subject correspond to the nsdsynthetic and nsdimagery scan 
sessions. This video is useful for assessing overall image quality and the stability of functional imaging across scan sessions. 
For quantitative analysis, see Supplementary Figure 4. 
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Supplementary Video 7. Inspection of mean EPI across scan sessions (surface visualization). Video available online 
(https://osf.io/ytjk4/ - grandmeansurface.mp4). This is similar in spirit to Supplementary Video 6, except that the mean EPI 
volumes have been projected onto each subject's cortical surface and then transferred to the fsaverage surface. 
 

 
 
Supplementary Video 8. Inspection of BOLD signal strength across scan sessions (volume visualization). Video 
available online (https://osf.io/kwxta/ - grandR2.mp4). Each frame shows the amount of variance explained by the ON-OFF 
GLM model (1-mm data preparation; fixed color range). This video is useful for assessing the overall strength and stability 
of BOLD responses in the NSD dataset. 
 

 
 
Supplementary Video 9. Inspection of BOLD signal strength across scan sessions (surface visualization). Video 
available online (https://osf.io/gu9wx/ - grandR2surface.mp4). This is similar in spirit to Supplementary Video 8, except 
that the variance explained volumes have been projected onto each subject's cortical surface and then transferred to the 
fsaverage surface. 
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Supplementary Video 10. Inflated surface visualization of noise ceilings. Video available online (https://osf.io/z3wxn/ 
- b3noiseceiling.mp4). This video shows the group-average b3 noise ceiling (see Figure 3F) on a rotating, inflated fsaverage 
surface. Values below 15% are thresholded away in order to show the underlying curvature. This video is useful for 
identifying brain regions whose activity is strongly related to the sensory content presented in the NSD experiment. 
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